Answer:
I will assume that “maximum force” implies the constant application of power P = 400 hp (international) to accelerating the vehicle. The force will therefore vary with speed as the vehicle accelerates. I will also assume that all engine energy goes into accelerating the vehicle, rather than rotating elements like its wheels.
In this case the 400 hp (equivalent to 298,280 watts) is applied for time t = 2 seconds. Therefore the kinetic energy of the vehicle is increased by:
ΔKE=Pt=(298,280)(2)=596,560 joules.
The initial kinetic energy is:
KEinitial=12mv2
=(0.5)(1600)(82)=51,200 joules.
Therefore final kinetic energy is:
KEfinal=KEinitial+ΔKE
=51,200+596,560
=647,760 joules
Therefore final vehicle velocity can be found:
KEfinal=12mv2
v=2KEfinalm−−−−−−−−√
=(2)(647,760)1600−−−−−−−−−−−√
= 28.455 m/s
Explanation:
All of the above but normally in a triple beam
Answer:
20 kg
Explanation:
Kinetic energy=½*Mass * velocity²
4000= ½* m*20²
8000=400m
m=8000/400
m=20 kg
Answer:The goal of the lab was to collect and transfer data including the tennis ball, football, and other objects.
Explanation: Edgenuity kid