The metal ball lost energy while the putty ball gained energy.
<h3>What is momentum?</h3>
Momentum is the product of mass and velocity of the body. We must note that momentum before collision is equal to momentum after collision.
1) Kinetic energy before collision = 1/2mv^2 = 0.5 * 6 * 4 = 12 J
2) kinetic energy after collision = 0.5 * 6 * 2= 6 J
3) Kinetic energy of putty ball = 0.5 * 6 * 2= 6 J
4) Energy lost by the metal ball = 12 J - 6 J = 6 J
5) Energy gained by the putty ball = 6 J - 0J = 6 J
6) The rest of the energy was converted to heat after the collision.
Learn more about kinetic energy: brainly.com/question/999862
<span>Jet streams act as an invisible director of the atmosphere and are largely responsible for changes in the weather across the globe.
Hope this helps</span>
Answer:
Because they would naturally dye the test strips in the colors violet and red, regardless of their pH values
(would really appreciate the brainliest)
To solve the problem, it is necessary the concepts related to the definition of area in a sphere, and the proportionality of the counts per second between the two distances.
The area with a certain radius and the number of counts per second is proportional to another with a greater or lesser radius, in other words,


M,m = Counts per second
Our radios are given by



Therefore replacing we have that,






Therefore the number of counts expect at a distance of 20 cm is 19.66cps
<span>The ball clears by 11.79 meters
Let's first determine the horizontal and vertical velocities of the ball.
h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s
v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s
Now determine how many seconds it will take for the ball to get to the goal.
t = 36.0 m / 15.04 m/s = 2.394 s
The height the ball will be at time T is
h = vT - 1/2 A T^2
where
h = height of ball
v = initial vertical velocity
T = time
A = acceleration due to gravity
So plugging into the formula the known values
h = vT - 1/2 A T^2
h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2
h = 42.92 m - 4.9 m/s^2 * 5.731 s^2
h = 42.92 m - 28.0819 m
h = 14.84 m
Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m</span>