Explanation:
It is given that,
Kinetic energy of the electron, 
Let the east direction is +x direction, north direction is +y direction and vertical direction is +z direction.
The magnetic field in north direction, 
The magnetic field in west direction, 
The magnetic field in vertical direction, 
Magnetic field, 
Firstly calculating the velocity of the electron using the kinetic energy formulas as :



(as it is moving from west to east)
The force acting on the charged particle in the magnetic field is given by :


Since, 
And, 
![F=1.6\times 10^{-19}\times [1178 k-2864.20j]](https://tex.z-dn.net/?f=F%3D1.6%5Ctimes%2010%5E%7B-19%7D%5Ctimes%20%5B1178%20k-2864.20j%5D)


(b) Let a is the acceleration of the electron. It can be calculated as :



Hence, this is the required solution.
Answer:
This values shows a right angle triangle
Explanation:
Given;
a vector 4.0 km due East
a 3.0 km due north
the resultant vector is 5.0 km
The resultant vector can be obtained by Pythagoras theorem if the vectors form a right angle triangle.
R² = 4² + 3²
R² = 16 + 9
R² = 25
R = √25
R = 5 km (right angle triangle proved)
Therefore, this values shows a right angle triangle
The force needed to stretch the steel wire by 1% is 25,140 N.
The given parameters include;
- diameter of the steel, d = 4 mm
- the radius of the wire, r = 2mm = 0.002 m
- original length of the wire, L₁
- final length of the wire, L₂ = 1.01 x L₁ (increase of 1% = 101%)
- extension of the wire e = L₂ - L₁ = 1.01L₁ - L₁ = 0.01L₁
- the Youngs modulus of steel, E = 200 Gpa
The area of the steel wire is calculated as follows;

The force needed to stretch the wire is calculated from Youngs modulus of elasticity given as;


Thus, the force needed to stretch the steel wire by 1% is 25,140 N.
Learn more here: brainly.com/question/21413915