1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marat540 [252]
3 years ago
8

For alloys of two hypothetical metals a and b, there exist an α, a-rich phase and a β, b-rich phase. from the mass fractions of

both phases for two different alloys (given below), which are at the same temperature, determine the composition of the phase boundary (or solubility limit) for (a)α and (b)β phases at this temperature.

Chemistry
1 answer:
IgorLugansk [536]3 years ago
5 0
Check the attached file for the answer.

You might be interested in
Para formar bronce, se mezclan 150g de cobre a 1100°C y 35g de estaño a 560°C. Determine la temperatura final del sistema.
jek_recluse [69]

Answer:

La temperatura final del sistema es 1029,346 °C.

Explanation:

Asumamos que el sistema conformado por el cobre y el estaño no tiene interacciones con sus alrededores. Por la Primera Ley de la Termodinámica, el cobre cede calor al estaño con tal de alcanzar el equilibrio térmico. El cobre se encuentra inicialmente en su punto de fusión, mientras que el estaño está por encima de ese punto, de modo que la transferencia de calor es esencialmente sensible:

m_{Cu}\cdot c_{Cu}\cdot (T-T_{Cu}) = m_{Sn}\cdot c_{Sn}\cdot (T_{Sn}-T)

(m_{Cu}\cdot c_{Cu} + m_{Sn}\cdot c_{Sn})\cdot T = m_{Sn}\cdot c_{Sn}\cdot T_{Sn} + m_{Cu}\cdot c_{Cu}\cdot T_{Cu}

T = \frac{m_{Sn}\cdot c_{Sn}\cdot T_{Sn}+m_{Cu}\cdot c_{Cu}\cdot T_{Cu}}{m_{Cu}\cdot c_{Cu}+m_{Sn}\cdot c_{Sn}} (1)

Donde:

m_{Sn} - Masa del estaño, en gramos.

m_{Cu} - Masa del cobre, en gramos.

c_{Sn} - Calor específico del estaño, en calorías por gramo-grados Celsius.

c_{Cu} - Calor específico del cobre, en calorías por gramo-grados Celsius.

T_{Sn} - Temperatura inicial del estaño, en grados Celsius.

T_{Cu} - Temperatura inicial del cobre, en grados Celsius.

Si sabemos que m_{Cu} = 150\,g, m_{Sn} = 35\,g, c_{Cu} = 0,093\,\frac{cal}{g\cdot ^{\circ}C}, c_{Sn} = 0,060\,\frac{cal}{g\cdot ^{\circ}C}, T_{Sn} = 560\,^{\circ}C y T_{Cu} = 1100\,^{\circ}C, entonces la temperatura final del sistema es:

T = \frac{(35\,g)\cdot \left(0,060\,\frac{cal}{g\cdot ^{\circ}C} \right)\cdot (560\,^{\circ}C)+(150\,g)\cdot \left(0,093\,\frac{cal}{g\cdot ^{\circ}C} \right)\cdot (1100\,^{\circ}C)}{(35\,g)\cdot \left(0,060\,\frac{cal}{g\cdot ^{\circ}C} \right)+(150\,g)\cdot \left(0,093\,\frac{cal}{g\cdot ^{\circ}C} \right)}

T = 1029,346\,^{\circ}C

La temperatura final del sistema es 1029,346 °C.

3 0
3 years ago
The normal freezing point of a certain liquid
stepladder [879]

Answer : The molal freezing point depression constant of X is 4.12^oC/m

Explanation :  Given,

Mass of urea (solute) = 5.90 g

Mass of X liquid (solvent) = 450.0 g

Molar mass of urea = 60 g/mole

Formula used :  

\Delta T_f=i\times K_f\times m\\\\T^o-T_s=i\times K_f\times\frac{\text{Mass of urea}\times 1000}{\text{Molar mass of urea}\times \text{Mass of X liquid}}

where,

\Delta T_f = change in freezing point

\Delta T_s = freezing point of solution = -0.5^oC

\Delta T^o = freezing point of liquid X= 0.4^oC

i = Van't Hoff factor = 1  (for non-electrolyte)

K_f = molal freezing point depression constant of X = ?

m = molality

Now put all the given values in this formula, we get

[0.4-(-0.5)]^oC=1\times k_f\times \frac{5.90g\times 1000}{60g/mol\times 450.0g}

k_f=4.12^oC/m

Therefore, the molal freezing point depression constant of X is 4.12^oC/m

4 0
3 years ago
What is the main difference between an isotope and an ion
eimsori [14]
An isotope is the vary of neutrons in an element, causing its atomic mass to change. While an ion is a charged atom that bonds to be stable. 
6 0
3 years ago
How many moles are in 65 g of carbon dioxide (CO2)?
ella [17]

The answer is 44.0095. We assume you are converting between grams CO2 and mole.
3 0
3 years ago
Read 2 more answers
It takes 11.2 kj of energy to raise the temperature of 145 g of benzene from 22.0°c to 67.0°c. what is the specific heat of benz
Cloud [144]
We can use the heat equation,
Q = mcΔT 

where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J g⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Q = 11.2 kJ = 11200 J
m = <span>145 g
</span>c = ?
ΔT = (67 - 22) °C = 45 °C
By applying the formula,
11200 J = 145 g x c x 45 °C
           c = 1.72 J g⁻¹ °C⁻¹

Hence, specific heat of benzene is 1.72 J g⁻¹ °C⁻¹.
7 0
3 years ago
Other questions:
  • Stronger wind can carry larger particles of sediment. T or F
    6·2 answers
  • I ONLY NEED 1 EXAMPLE for each one PLZ HELP ME I WILL MAKE BRAINLIST HELP ME FAST PLZ!!!! Using a skillet on the stove to cook s
    5·2 answers
  • If State A is heated, which of the other two states would it more closely resemble? Explain.
    11·1 answer
  • Explain how the principal of uniformitarianism is used to interpret earths past
    7·1 answer
  • What is most likely to happen when two fluorine
    14·2 answers
  • Why displacemet reaction are useful
    11·1 answer
  • Enter your answer in the provided box.
    12·1 answer
  • What would life be like if we couldn’t change reaction rates?
    7·1 answer
  • Grass → rabbit → fox
    11·1 answer
  • Write a balanced equation for the decomposition reaction described, using the smallest possible integer coefficients. When ammon
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!