Answer:
Explanation:
Given
there is fix Quantity of gas i.e. mass of gas is constant
From ideal gas Equation
PV=nRT
(a) volume always increases is not true as Pressure can also be increased .
(b)If Pressure is constant along with mass then as Temperature increases, Volume also increases.
(c)true , Product of Pressure and volume depends upon temperature thus it also increases with temperature.
(d)Density of gas may or may not increases
As density is 
volume may increase or decrease as temperature increase .
(e)false
as it clearly stated that quantity of fixed therefore there is no change in gas
The coefficient of expansion is 13 * 10^-6 m per meter length.per oK
The temperature difference = 42 - - 8 = 50 oC
delta T = (42 + 273) - (-8 + 273) = 50 oK
delta L = L * 13* 10^6 m/oK
oK = 50 oK delta L = 19.5 cm = 19.5 cm [1m / 100 cm] = 0.195m
So we need to find the length and it is computed by:
0.195= L * 13 * 10^-6 * 50 L = 0.195 / (13*10^-6*50) L = 300 m
S s. S s abbs s sbsbs z sbs
Answer:
Part A
Coriolis effect is used to describe how objects which are not fixed to the ground are deflected as they travel over long distances due to the rotation of the Earth relative to the 'linear' motion of the objects
Due to the Coriolis effect the wind flowing towards the Equator from high pressure belts in the subtropical regions in both the Northern and Southern Hemispheres are deflected towards the western direction because the Earth rotates on its axis towards the east
Part B
In the Northern Hemispheres, the winds are known as northeasterly trade winds and in the Southern Hemisphere, they are known as the southeasterly trade wind. Therefore, Coriolis effect has the same effect on the direction of the Trade Winds in the Southern Hemisphere as it does in the Northern Hemisphere
Explanation:
Answer:
Option C.
Impulse = mass × change in velocity
Explanation:
Impulse is defined by the following the following formula:
Impulse = force (F) × time (t)
Impulse = Ft
From Newton's second law of motion,
Force = change in momentum /time
Cross multiply
Force × time = change in momentum
Recall:
Impulse = Force × time
Thus,
Impulse = change in momentum
Recall:
Momentum = mass x velocity
Momentum = mv
Chang in momentum = mass × change in velocity
Change in momentum = mΔv
Thus,
Impulse = change in momentum
Impulse = mass × change in velocity