A) d. 10T
When a charged particle moves at right angle to a uniform magnetic field, it experiences a force whose magnitude os given by

where q is the charge of the particle, v is the velocity, B is the strength of the magnetic field.
This force acts as a centripetal force, keeping the particle in a circular motion - so we can write

which can be rewritten as

The velocity can be rewritten as the ratio between the lenght of the circumference and the period of revolution (T):

So, we get:

We see that this the period of revolution is directly proportional to the mass of the particle: therefore, if the second particle is 10 times as massive, then its period will be 10 times longer.
B) 
The frequency of revolution of a particle in uniform circular motion is

where
f is the frequency
T is the period
We see that the frequency is inversely proportional to the period. Therefore, if the period of the more massive particle is 10 times that of the smaller particle:
T' = 10 T
Then its frequency of revolution will be:

4) They have non-moving magnetic fields.
1) 5765 mol
First of all, we need to find the volume of the gas, which corresponds to the volume of the room:

Now we can fidn the number of moles of the gas by using the ideal gas equation:

where
is the gas pressure
is the gas volume
n is the number of moles
R is the gas constant
is the gas temperature
Solving for n,

2) 184 kg
The mass of one mole is equal to the molar mass of the oxygen:

so if we have n moles, the mass of the n moles will be given by

since n = 5765 mol, we find

The answer is B. cyan.
If an object reflects green and blue light we preceive the reflection not as separate colours but a mixture of both aka cyan.
Hope this helps.
r3t40