Answer:
The equation of equilibrium at the top of the vertical circle is:
\Sigma F = - N - m\cdot g = - m \cdot \frac{v^{2}}{R}
The speed experimented by the car is:
\frac{N}{m}+g=\frac{v^{2}}{R}
v = \sqrt{R\cdot (\frac{N}{m}+g) }
v = \sqrt{(5\,m)\cdot (\frac{6\,N}{0.8\,kg} +9.807\,\frac{kg}{m^{2}} )}
v\approx 9.302\,\frac{m}{s}
The equation of equilibrium at the bottom of the vertical circle is:
\Sigma F = N - m\cdot g = m \cdot \frac{v^{2}}{R}
The normal force on the car when it is at the bottom of the track is:
N=m\cdot (\frac{v^{2}}{R}+g )
N = (0.8\,kg)\cdot \left(\frac{(9.302\,\frac{m}{s} )^{2}}{5\,m}+ 9.807\,\frac{m}{s^{2}} \right)
N=21.690\,N
Given: distance 1 d₁ = 40 m; distance 2 d₂ = 3.8 m g = -9.8 m/s²
Initial Velocity Vi = 0 Final Velocity of stone 2 is unknown = ?
Total distance dₓ = d₁ - d₂ = 40 m - 3.8 m = 36.2 m
Formula: a = Vf² - Vi²/2d derive for Final Velocity Vf
acceleration is now due to gravity, therefore a = g
Vf = √2gd Vf = √2(9.8 m/s²)(36.2 m)
Vf = 26.64 m/s
Reason: The second stone will still start from rest.
Answer:
bc it was a universal explosion and It started the future
Explanation:
FACTS
1.549×10-19lJ is the energy of a photon emitted when an electron in a hydrogen atom undergoes a transition from =7 to =1.
The equation E= hcE =hc, where h is Planck's constant and c is the speed of light, describes the inverse relationship between a photon's energy (E) and the wavelength of light ().
The Rydberg formula is used to determine the energy change.
Rydberg's original formula used wavelengths, but we may rewrite it using units of energy instead. The result is the following.
aaΔE=R(1n2f−1n2i) aa
were
2.17810-18lJ is the Rydberg constant.
The initial and ultimate energy levels are ni and nf.
As a change of pace from
n=5 to n=3 gives us
ΔE
=2.178×10-18lJ (132−152)
=2.178×10-18lJ (19−125)
=2.178×10-18lJ×25 - 9/25×9
=2.178×10-18lJ×16/225
=1.549×10-19lJ
Learn more about Rydberg formula here-
brainly.com/question/13185515
#SPJ4
Mass of the object m = 2.9 kg
Force F1 = 28.449 N
F1 = m1 x a => a = F / m => 28.449 / 2.9 => a = 9.81, which is gravitational acceleration.
In the same lab, a = g = 9.81, second object F2 = 48.7N = m2 x a
m2 = F2 / a => 48.7 / 9.81 => m2 = 4.96 kg
Mass of the second object m2 = 4.96 kg