Answer: The reactants are baking soda and vinegar. Baking soda is a white powder, and vinegar is a clear liquid. The products of this reaction are carbon dioxide, water, and sodium acetate. Carbon dioxide is a colorless gas, water is a colorless liquid, and sodium acetate is a white crystalline powder.
A chemical change can be seen in how the molecular formulas of the products are different from the reactants, since the reactants have chemically changed into completely different molecules.
Hope this helps
Answer:
The fraction of water body necessary to keep the temperature constant is 0,0051.
Explanation:
Heat:
Q= heat (unknown)
m= mass (unknown)
Ce= especific heat (1 cal/g*°C)
ΔT= variation of temperature (2.75 °C)
Latent heat:
ΔE= latent heat
m= mass (unknown)
∝= mass fraction (unknown)
ΔHvap= enthalpy of vaporization (539.4 cal/g)
Since Q and E are equal, we can match both equations:

Mass fraction is:


∝=0,0051
Answer:
No
Explanation:
No, but the total mass of reactants must equal the total mass of products to be a balanced equation.
Example: Consider the following reaction ...
3H₂ + N₂ => 2NH₃ and 'amu' is atomic mass units (formula weights from periodic table)
In terms of molecules, there are 4 molecules on the left (3 molecular hydrogens (H₂) and 1 molecular nitrogen (N₂) and 2 molecules of ammonia on the right side of equation arrow. ∑reactant molecules ≠ ∑product molecules.
In terms of mass of reactants & mass of products, the 3H₂ + N₂ => 6amu + 28amu = 34amu & mass of products (2NH₃) => 2(14amu) + 6(1amu) = 34amu for sum of product masses.
∑mass reactants = ∑mass products <=> 34amu = 34amu.
The expression '∑mass reactants = ∑mass products' as applied to chemical equations is generally known as 'The Law of Mass Balance'.
Answer:
A
Explanation:
With chemical reactions, there are various factors that affect the rate of the reaction. One of these is temperature.
When you raise the temperature, the reaction will move faster. Why? Temperature is directly correlated with the kinetic energy (basically, the energy that makes the particles move). Higher temperatures mean higher kinetic energies. Particles with higher kinetic energies move faster, which makes them more likely to collide. When collisions occur more frequently, the reaction follows through more quickly.
Thus, when Julissa warms the solutions, she will see that bubbling and white solid formation (the products of the reaction) occus faster. So, the answer is A.
Hope this helps!
Answer : The reactant acid and conjugate base in this reaction is,
and
.
Explanation :
Conjugate acid : A species that is formed by receiving of a proton
by a base is known as conjugate acid.
Conjugate base : A species that is formed by donating of a proton by an acid is known as conjugate base.
The given chemical reaction is,

In this reaction,
(base) react with
(acid) to give
(conjugate acid) and
(conjugate base).
Therefore, the reactant acid and conjugate base in this reaction is,
and
.