Answer:
33.4
Explanation:
Step 1:
\sumMo=0 (moment about the origin)
Fb(15)-Fc(15)=0
Fb=Fc
Step 2:
\sumFx=0
-Fb-Fccos\theta+Ncsin\theta=0
Fc=0.3Nc=Fb
-0.3Nc-0.3Nccos\theta+Ncsin\theta=0
(-0.3-cos\theta+sin\theta)Nc=0----(1)
\sumFy=0
Nccos\theta+Fcsin\theta-Nb=0
Nccos\theta+0.3Ncsin\theta-Nc=0
Nc[cos\theta+0.3sin\theta-1]=0--------(2)
Solving eq (1) and eq (2)
\theta=33.4
Step 3:
As the roller is a two force member
2(90-\phi)+\theta=180
\phi=\theta/2
\phi=Tan(\muN/N)-1
\phi=16.7
\theta=2x16.7=33.4
Answer:
The first one A, " These are lines of equal air pressure".
Explanation:
Answer:
Check the explanation
Explanation:
to know the lift per unit span (N/m) that is expected to be measured when the wing attack angle is 4°
as well as the corresponding section lift coefficient and die moment coefficient .
Kindly check the attached image below to see the step by step explanation to the above question.
Zrizorzlzfxxxgoxxxxpgxtoxxxhxuxyf
Answer:
Final length= 746.175 mm
Explanation:
Given that Length of aluminium at 223 C is 750 mm.As we know that when temperature of material increases or decreases then dimensions of material also increases or decreases respectively with temperature.
Here temperature of aluminium decreases so the final length of aluminium decreases .
As we know that

Now by putting the values

ΔL=3.82 mm
So final length =750-3.82 mm
Final length= 746.175 mm