Answer:
Here is the answer.
Explanation:
Balanced forces- they are those forces that produce 0 resultant forces.
therefore, on applying a balanced force on the object, it wouldn't result in any change, as resultant force would be 0.
Answer:
The speed of the vehicles immediately after the collision is 5.84 m/s.
Explanation:
The speed of the vehicles after the collision can be found by conservation of linear momentum:


Where:
m₁: is the mass of the car = 0.5 ton = 500 kg
m₂: is the mass of the lorry = 9.5 ton = 9500 kg
: is the initial speed of the car = 40 km/h = 11.11 m/s
: is the initial speed of the lorry = 20 km/h = 5.56 m/s
: is the final speed of the car =?
: is the final speed of the lorry =?
Since the two vehicles become tightly locked together after the collision
=
:


Therefore, the speed of the vehicles immediately after the collision is 5.84 m/s.
I hope it helps you!
Convert km to m. -> 320km=320000 m
Convert hours to seconds -> 4 hrs=14400 s
Divide the distance by time because v=d/t
320000/14400=22.22 m/s
Answer:
313, 0.60 s
Explanation:
wavelength
= speed/frequency
= 340/520
= 0.6538 m
Number of wavelengths
= 205/0.6538
= <u>313</u> (whole number)
Time delay
= distance/speed
= 204/340
= <u>0.60 s</u>
Explanation:
The Coulomb's law states that the force acting on two charges is directly proportional to the product of charges and inversely proportional to the square of distance between them . Mathematically, it is given by

Where
k is the electrostatic constant
q₁ and q₂ are charges
r is the distance between them.
The SI unit of electric force is Newton. It can be attractive or repulsive. The attraction or repulsion depend on charges. If both charges are positive, the force is repulsive and if both are opposite charges, the force is attractive.