<span> Ethanol's </span>chemical<span> formula is C2H5OH.</span>Properties<span>. Pure ethanol is a flammable, colorless liquid with a boiling point of 78.5° C. Its low m</span>
Answer:
339kJ
Explanation:
Given parameters:
Mass of steam = 150g = 0.15kg
Initial temperature of steam = 100°C
Final temperature of water = 100°C
Unknown:
Quantity of heat that must be removed to condense the steam = ?
Solution:
The heat involved here is a latent heat because there is no change temperature. The process is just a phase change.
H = mL
m is the mass
L is the latent heat of vaporization = 2,260 kJ/kg
Insert the parameters and solve;
H = 0.15kg x 2,260 kJ/kg
H = 339kJ
Answer:
D =Average atomic mass = 10.801 amu.
5) True
Explanation:
Abundance of B¹⁰= 19.9%
Abundance of B¹¹ = 80.1%
Atomic mass of B¹⁰ = 10 amu
Atomic mass of B¹¹ = 11 amu
Average atomic mass = ?
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (10×19.9)+(11×80.1) /100
Average atomic mass = 199 + 881.1 / 100
Average atomic mass = 1080.1 / 100
Average atomic mass = 10.801 amu.
2)A chemical reaction is one in which a new elements is created
True
False
Answer:
In chemical reaction new substances are created.
For example:
Photosynthesis:
It is the process in which in the presence of sun light and chlorophyll by using carbon dioxide and water plants produce the oxygen and glucose.
Carbon dioxide + water + energy → glucose + oxygen
water is supplied through the roots, carbon dioxide collected through stomata and sun light is capture by chloroplast.
Chemical equation:
6H₂O + 6CO₂ + energy → C₆H₁₂O₆ + 6O₂
it is known from balanced chemical equation that 6 moles of carbon dioxide react with the six moles of water and created one mole of glucose and six mole of oxygen.
Answer:
+15.8°
Explanation:
The formula for the observed rotation (α) of an optically active sample is
α = [α]<em>lc
</em>
where
<em>l</em> = the cell path length in decimetres
<em>c</em> = the concentration in units of g/100 mL
[α] = the specific rotation in degrees
1. Convert the concentration to units of g/100 mL

2. Calculate the observed rotation

Answer:
0.0970 M
Explanation:
Remember this equation:
mol/M x V
Convert it so that you can get M.
M=mol/V
Convert the 2.14 grams of H2SO4 into mols
=0.0218
Convert mL to L
225/1000
=0.225
Plug it in.
0.0218/0.225
=0.0970 M