Yes.
-- 'Acceleration' does NOT mean 'speeding up'.
It means ANY change in the speed OR direction of motion ...
speeding up, slowing down, or turning.
-- If an object is NOT moving in straight line at constant speed,
then its motion is accelerated.
-- In circular motion, or even just going around a curve,
the object is accelerating, because its direction is constantly
changing, even if its speed is constant.
Answer:
(A) 7.9 m/s^{2}
(B) 19 m/s
(C) 91 m
Explanation:
initial velocity (U) = 0 mph = 0 m/s
final velocity (V) = 85 mph = 85 x 0.447 = 38 m/s
initial time (ti) = 0 s
final time (t) = 4.8 s
(A) acceleration = 
=
= 7.9 m/s^{2}
(B) average velocity = 
=
= 19 m/s
(C) distance travelled (S) = ut + 
= (0 x 4.8) +
= 91 m
The ball should put 200 N of force towards the golfer.
Newton's Third Law is every action has an equal and opposite reaction.
It's the ball exerting 200 N of force towards the club as well, but the opposite reaction is that it flies away.
Answer:
No it will not (false)
Explanation:
I say this because if anything the ice will sink and melt from a solid to a liquid and that will lead to i guess more water for the aquatic life. (THIS IS A THEORY SHAWTY)
Answer:
Explanation:
Given:
P = 6.35 atm
= 1.01 × 10^5 × 6.35
= 6.434 × 10^5 N/m^2
As = 975 cm^2
D = 3.8 g/cm^2
M = 320 kg
Since the propellant volume is equal to the cross sectional area, As times the fuel length, the volumetric propellant consumption rate is the cross section area times the linear burn rate, bs , and the instantaneous mass flow rate of combustion, ms gases generated is equal to the volumetric rate times the fuel density, D
ms = D × As × bs
ms ÷ bs = M/L
M/L = 3.8 × 975
= 3705 g/cm
= 3.705 × 10^6 kg/m^3
Pressure = mass × g/area
= mass/length × time^2
t = sqrt(3.705 × 10^6/6.43 × 10^5)
= 2.4 s