Answer:
The one with equal forces on both sides, D is your answer
Explanation:
A, 5 and 10 No
B 13 and 8 no
C 5 and 8 no
D 6 and 6 YES
Answer:A piece of driftwood moves up and down as water waves pass beneath it. However, it does not move toward the shore with the waves. What does this demonstrate about the propagation of waves through a medium?
A) Waves transmit energy but not matter as they progress through a medium.
B) Waves transmit matter but not energy as they progress through a medium.
C) Waves do not transmit matter or energy as they progress through a medium.
D) Waves transmit energy as well as matter as they progress through a medium.
Explanation:
A piece of driftwood moves up and down as water waves pass beneath it. However, it does not move toward the shore with the waves. What does this demonstrate about the propagation of waves through a medium?
A) Waves transmit energy but not matter as they progress through a medium.
B) Waves transmit matter but not energy as they progress through a medium.
C) Waves do not transmit matter or energy as they progress through a medium.
D) Waves transmit energy as well as matter as they progress through a medium.
Many things can affect a material's resistance, The type of material, how the material is being held (If its laying flat, being pulled, etc). What the material is used for, and how much material there is. Hope this helps!
Answer:
An ultra intense laser is one with which intensities greater than 1015 W cm-2 can be achieved.
Explanation:
This intensity, which was the upper limit of lasers until the invention of the Chirped Pulse Amplification, CPA technique, is the value around which nonlinear effects on the transport of radiation in materials begin to appear.
Currently, the most powerful lasers reach intensities of the order of 1021W cm-2 and powers of Petawatts, PW, in each pulse. This range of intensities has opened the door for lasers to a multitude of disciplines and scientific areas traditionally reserved for accelerators and nuclear reactors, applying as generators of high-energy electron, ion, neutron and photon beams, without the need for expensive infrastructure.
Answer:
The magnitude of the tension on the ends of the clothesline is 41.85 N.
Explanation:
Given that,
Poles = 2
Distance = 16 m
Mass = 3 kg
Sags distance = 3 m
We need to calculate the angle made with vertical by mass
Using formula of angle



We need to calculate the magnitude of the tension on the ends of the clothesline
Using formula of tension

Put the value into the formula


Hence, The magnitude of the tension on the ends of the clothesline is 41.85 N.