Considering the deuterium-tritium fusion reaction with the tritium nucleus at rest: ¹₂H + ¹₃H → ²₄He + ⁰₁n the electric potential energy (in electron volts) at this distance is 17.58MeV
<h3>How is the electric potential energy of deuterium-tritium fusion reaction calculated?</h3>
The reaction is ¹₂H + 1₃H → ²₄He + ⁰₁n
Value of Q = (Mass of ¹₂H + Mass of ¹₃H - Mass of ²₄He- Mass of n) x 931 MeV
Mass of ¹₂H = 2.014102
Mass of ¹₃H = 3.016049
Mass of ²₄He = 4.002603
Mass of n = 1.00867
Therefore Value of Q = [2.014102+3.016049−4.002603−1.00867] × 931 MeV
Therefore Value of Q = 0.01887 × 931 MeV
= 17.58MeV
To learn more about deuterium-tritium fusion reaction, refer
brainly.com/question/9054784
#SPJ4
1) nuclear fusion
During nuclear fusion, the high pressure and temperature in the sun's core cause nuclei to separate from their electrons. During this process, radiant energy is released.
Answer with Explanation:
We are given that
Resistance of solenoid,R=4.3 ohm
Magnetic field,B=
Current,I=4.6 A
Diameter of wire,d=0.5 mm=
Radius of wire,r=

Radius of solenoid,r'=1 cm=

Resistivity of copper,
We know that

Where 
Using the formula


Number of turns of wire=
Number of turns of wire=
Hence, the number of turns of the solenoid,N=799
Magnetic field in solenoid,B=






Length of solenoid=12.5 cm
1m=100 cm
I believe that the answer is B. 133 N
Answer:
a)
s
b) 3.41 mm
Explanation:
a)
We take the speed of light, c =
m/s and the refractive index of glass as 1.517.
Speed = distance/time
Time = distance/speed
Refractive index, n = speed of light in vacuum / speed of light in medium






b)
We take the refractive index of water as 1.333.
Speed in water = speed in vacuum / refractive index of water
Distance = speed * time



d = 3.41 mm