Answer: B: Symbols of Elements
Explanation:
Answer:
THE NEW VOLUME OF THE OXYGEN GAS AT 28 PSI FROM 72.5 PSI IS 0.078 L.
Explanation:
Initial volume of the oxygen in the container = 30.0 mL = 30 / 000 L = 0.03 L
Initial pressure of the oxygen = 72.5 psi = 1 psi = 6890 pascal
Final pressure = 28 psi
Final volume = unknown
First convert the mL to L and since both pressures are in similar unit that is psi; there is no need converting them to pascal or other standard unit of pressure. They cancel each other out.
This question follows Boyle's equation of gas laws and mathematically it is written as:
P1 V1 = P2 V2
Re-arranging by making P2 the subject of the formula, we have:
V2 = P1 V1 / P2
V2 = 72,5 * 0.03 / 28
V2 = 2.175 /28
V2 = 0.0776 L
The new volume of the oxygen gas at a change in pressure from 72.5 psi to 28 psi is 0.078 L.
Answer:
Here, acceleration due to gravity(a) is assumed as 10m/s².We can also take it as 9.8m/s²
Explanation:
The reaction N2O4 (g) <--> 2NO2 (g) is endothermic, meaning that it consumes heat to move towards formation of the products.
According to Le Chatelier's Principle, therefore, if heat is added, more product (NO2) will be produced, and equilibrium would shift towards the right side. This is choice 3.
Answer : The value of equilibrium constant for this reaction at 328.0 K is 
Explanation :
As we know that,

where,
= standard Gibbs free energy = ?
= standard enthalpy = 151.2 kJ = 151200 J
= standard entropy = 169.4 J/K
T = temperature of reaction = 328.0 K
Now put all the given values in the above formula, we get:


The relation between the equilibrium constant and standard Gibbs free energy is:

where,
= standard Gibbs free energy = 95636.8 J
R = gas constant = 8.314 J/K.mol
T = temperature = 328.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:


Therefore, the value of equilibrium constant for this reaction at 328.0 K is 