Answer:
(a) See below
(b) 103.935 °F; 102.235 °F
Explanation:
The equation relating the temperature to time is

1. Calculate the thermometer readings after 0.5 min and 1 min
(a) After 0.5 min

(b) After 1 min

2. Calculate the thermometer reading after 2.0 min
T₀ =106.321 °F
ΔT = 100 - 106.321 °F = -6.321 °F
t = t - 1, because the cooling starts 1 min late

3. Plot the temperature readings as a function of time.
The graphs are shown below.
Answer:
At 430.34 K the reaction will be at equilibrium, at T > 430.34 the
reaction will be spontaneous, and at T < 430.4K the reaction will not
occur spontaneously.
Explanation:
1) Variables:
G = Gibbs energy
H = enthalpy
S = entropy
2) Formula (definition)
G = H + TS
=> ΔG = ΔH - TΔS
3) conditions
ΔG < 0 => spontaneous reaction
ΔG = 0 => equilibrium
ΔG > 0 non espontaneous reaction
4) Assuming the data given correspond to ΔH and ΔS
ΔG = ΔH - T ΔS = 62.4 kJ/mol + T 0.145 kJ / mol * K
=> T = [ΔH - ΔG] / ΔS
ΔG = 0 => T = [ 62.4 kJ/mol - 0 ] / 0.145 kJ/mol*K = 430.34K
This is, at 430.34 K the reaction will be at equilibrium, at T > 430.34 the reaction will be spontaneous, and at T < 430.4K the reaction will not occur spontaneously.
40 drops of blood in a tube that holds 2 mL
The answer is letter (B).