Answer:
56 kg
Explanation:
The change in potential energy of the man is given by:

where
m is the man's mass
g is the gravitational acceleration
is the change in height of the man
In this problem, we have:
is the gain in potential energy
g = 9.8 m/s^2 is the gravitational acceleration
is the change in height
Re-arranging the equation and substituting the numbers, we find the mass:

For a wave:
v = fλ
v is the velocity, f is the frequency, and λ is the wavelength.
Assuming the velocity of the wave doesn't change...
If you increase its frequency, its wavelength will shorten.
Walk out. If it's denser than air, it'll settle to the bottom
Answer 1) The electric field at distance r from the thread is radial and has magnitude
E = λ / (2 π ε° r)
The electric field from the point charge usually is observed to follow coulomb's law:
E = Q / (4 π ε°
)
Now, adding the two field vectors:
= {2.5 / (22 π ε° X 0.07 ) ; 0}
Answer 2)
= {2.3 / (4 2 π ε°) ( - 7/ (√(84); -12 / (√84))
Adding these two vectors will give the length which is magnitude of the combined field.
The y-component / x-component gives the tangent of the angle with the positive x-axes.
Please refer the graph and the attachment for better understanding.
Answer:
0.54m
Explanation:
Step one:
given data
length of seesaw= 3m
mass of man m1= 85kg
weight = mg
W1= 85*10= 850N
mass of daughter m2= 35kg
W2= 35*10= 350N
distance from the center= (1.5-0.2)= 1.3m
Step two:
we know that the sum of clockwise moment equals the anticlockwise moment
let the distance the must sit to balance the system be x
taking moment about the center of the system
350*1.3=850*x
455=850x
divide both sides by 850
x=455/850
x=0.54
Hence the man must sit 0.54m from the right to balance the system