Answer is: 9,7 L is needed to store helium gas.
n(He) = 0,80 mol.
p(He) = 204,6 kPa.
T = 300 K.
R = 8,314 J/K·mol; universal gas constant.
Use ideal law eqaution: p·V = n·R·T.
V = n·R·T / p.
V(He) = 0,80 mol · 8,314 J/K·mol · 300 K ÷ 204,6 kPa.
V(He) = 9,75 L.
Answer:
C.
The air pressure creates a vacuum in the straw that pulls the air into the liquid.
If I'm correct, the crater is actually a circular-shaped area around the volcano's central vent. My answer is false
Answer:
Chlorine is more likely to steal a valence electron from sodium.
Explanation:
Sodium is number 11 on the periodic table with one valence electron. Belonging to the first group, it's one of the alkali metal, which are known to be highly reactive. Chlorine is number 17 with seven valence electrons, and it's in the second-to-last group of halogens--also very reactive.
Considering that elements with one valence electron are just about 100% likely to give up electrons to reach a stable state, sodium would be the element that is more likely to lose its valence electron to chlorine. In other words, chlorine would be the electron thief.
Answer:
Adenosine triphosphate
In science, ATP stands for adenosine triphosphate. This chemical, discovered in the 1920s, is important to all life. It stores and releases energy for many cellular processes. It is found in mitochondria.
Explanation: