The heat/enthalpy of vaporization of water represents the energy input required to convert one mole of water into vapor at a constant temperature. Intermolecular forces including hydrogen bondings of significant strength hold water molecules in place under its liquid state. Whereas the molecules experience almost no intermolecular interactions under the gaseous state- consider the way noble gases molecules interact. It is thus necessary to supply sufficient energy to overcome all intermolecular interactions present in the substance under its liquid state to convert the substance into a gas. The heat of vaporization is thus related to the strength of the intermolecular interactions.
Water molecules contain hydrogen atoms bonded directly to oxygen atoms. Oxygen atoms are highly electronegative and take major control of electrons in hydrogen-oxygen bonds. Hydrogen atoms in water molecules thus experience a strong partial-positive charge and would attract lone pairs of electron on neighboring water molecules. "Hydrogen bonds" refer to the attraction between hydrogen atoms bonded to electronegative elements and lone pairs of electrons. The hydrogen-oxygen bonds in water molecules are so polarized that hydrogen bonds in water are stronger than both dipole-dipole interactions and London Dispersion Forces in most other molecules. It thus take high amounts of energy to separate water molecules sufficiently apart such that they no longer experience intermolecular interactions and behave collectively like a gas. As a result, water has one of the highest heat of vaporization among covalent molecules of similar sizes.
Answer:
1. All red calves i.e. RR
2. All roan calves i.e RW
3. 2 red calves (RR) and two roan calves (RW)
Explanation:
According to this question, a gene coding for fur colour in cattle is involved. Red alleles (R) and white alleles (W) are co-dominant to produce a roan cattle (RW). The possible traits of the following crosses are (see attached punnet square):
1) A red bull (RR) is mated to a red (RR) cow: All red calves i.e. RR
2) A red (RR) bullis mated with white (WW) cow: All roan calves i.e RW
3) A roan bull (RW) is mated with red (RR) cow: 2 red calves (RR) and two roan calves (RW).
ANSWER:
What is the measured component of the orbital magnetic dipole moment of an electron with the values
(a) ml=3
(b )
ml= −4
a) -278 x
J/T
b) 3.71 x
J/T
STEP-BY-STEP EXPLANATION:
a) ml= 3
Цorb,z = ml Цв = - (3) * (9.27e - 24) = -278 x
J/T
b) ml= 3
Цorb,z = ml Цв = - (-4) * (9.27e - 24) = 3.71 x
J/T
Answer: i beleive it is fixation in edge 2020
Explanation:
Answer:
passively diffuses down its concentration gradient through the endothelial cell plasma membrane out of the cell and then passiveley diffuses through the plasma membrane into the cytoplasm of the smooth muscle cell, where it acts to decrease contraction.
Explanation:
Hello,
At first, we must consider that
and
,
passively diffuses through membranes. As it is produced by an enzyme and accumulates in the endothelial cell cytosol,
passively diffuses down its concentration gradient through the endothelial cell plasma membrane out of the cell and then passiveley diffuses through the plasma membrane into the cytoplasm of the smooth muscle cell, where it acts to decrease contraction.
Best regards