There is no soil in a hole
;)
<span>The de-acceleration or negative acceleration of stopping is what damages bones. The ground is rigid and therefore the change in momentum when striking the ground will be large. On the trampoline, the elasticity of the material means that the momentum changes more slowly, resulting in smaller accelerations.</span>
Answer:
Explanation:
The tidal current flows to the east at 2.0 m/s and the speed of the kayaker is 3.0 m/s.
Let Vector
is the tidal current velocity as shown in the diagram.
In order to travel straight across the harbor, the vector addition of both the velocities (i.e the resultant velocity,
must be in the north direction.
Let
is the speed of the kayaker having angle \theta measured north of east as shown in the figure.
For the resultant velocity in the north direction, the tail of the vector
and head of the vector
must lie on the north-south line.
Now, for this condition, from the triangle OAB




Hence, the kayaker must paddle in the direction of
in the north of east direction.
Answer:
5.01 J
Explanation:
Info given:
mass (m) = 0.0780kg
height (h) = 5.36m
velocity (v) = 4.84 m/s
gravity (g) = 9.81m/s^2
1. First, solve for Kinetic energy (KE)
KE = 1/2mv^2
1/2(0.0780kg)(4.84m/s)^2 = 0.91 J
so KE = 0.91 J
2. Next, solve for Potential energy (PE)
PE = mgh
(0.0780kg)(9.81m/s^2)(5.36m) = 4.10 J
so PE = 4.10 J
3. Mechanical Energy , E = KE + PE
Plug in values for KE and PE
KE + PE = 0.91J + 4.10 J = 5.01 J