1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ira [324]
3 years ago
6

What did James Cameron use on his 2nd visit to this famous ship to look inside?

Physics
1 answer:
OlgaM077 [116]3 years ago
5 0

Answer:

beneath the surface of the Pacific Ocean comes from samples and video collected by an unmanned lander

You might be interested in
A common method to measure thermal conductivity of a biomaterial is to insert a long metallic probe axially into the center of a
tia_tia [17]

Answer:

The thermal conductivity of the biomaterial is approximately 1.571 watts per meter-Celsius.

Explanation:

Let suppose that thermal conduction is uniform and one-dimensional, the conduction heat transfer (\dot Q), measured in watts, in the hollow cylinder is:

\dot Q = \frac{2\cdot k\cdot L}{\ln \left(\frac{D_{o}}{D_{i}} \right)}\cdot (T_{i}-T_{o})

Where:

k - Thermal conductivity, measured in watts per meter-Celsius.

L - Length of the cylinder, measured in meters.

D_{i} - Inner diameter, measured in meters.

D_{o} - Outer diameter, measured in meters.

T_{i} - Temperature at inner surface, measured in Celsius.

T_{o} - Temperature at outer surface, measured in Celsius.

Now we clear the thermal conductivity in the equation:

k = \frac{\dot Q}{2\cdot L\cdot (T_{i}-T_{o})}\cdot \ln\left(\frac{D_{o}}{D_{i}} \right)

If we know that \dot Q = 40.8\,W, L = 0.6\,m, T_{i} = 50\,^{\circ}C, T_{o} = 20\,^{\circ}C, D_{i} = 0.01\,m and D_{o} = 0.04\,m, the thermal conductivity of the biomaterial is:

k = \left[\frac{40.8\,W}{2\cdot (0.6\,m)\cdot (50\,^{\circ}C-20\,^{\circ}C)}\right]\cdot \ln \left(\frac{0.04\,m}{0.01\,m} \right)

k \approx 1.571\,\frac{W}{m\cdot ^{\circ}C}

The thermal conductivity of the biomaterial is approximately 1.571 watts per meter-Celsius.

8 0
3 years ago
What is the volume of a storage tank which will hold 3200kg of petrol?
otez555 [7]

Answer:

The volume of 3200 kg of petrol is 4 m^3.

4 0
3 years ago
One ring of radius a is uniformly charged with charge +Q and is placed so its axis is the x-axis. A second ring with charge –Q i
kati45 [8]

Answer:

The force exerted on an electron is 7.2\times10^{-18}\ N

Explanation:

Given that,

Charge = 3 μC

Radius a=1 m

Distance  = 5 m

We need to calculate the electric field at any point on the axis of a charged ring

Using formula of electric field

E=\dfrac{kqx}{(a^2+x^2)^{\frac{3}{2}}}\hat{x}

E_{1}=\dfrac{kqx}{(a^2+x^2)^{\frac{3}{2}}}\hat{x}

Put the value into the formula

E_{1}=\dfrac{9\times10^{9}\times3\times10^{-6}\times5}{(1^2+5^2)^{\frac{3}{2}}}

E_{1}=1.0183\times10^{3}\ N/C

Using formula of electric field again

E_{2}=\dfrac{kqx}{(a^2+x^2)^{\frac{3}{2}}}\hat{x}

Put the value into the formula

E_{2}=\dfrac{9\times10^{9}\times(-3\times10^{-6})\times5}{((0.5)^2+5^2)^{\frac{3}{2}}}

E_{2}=-1.064\times10^{3}\ N/C

We need to calculate the resultant electric field

Using formula of electric field

E=E_{1}+E_{2}

Put the value into the formula

E=1.0183\times10^{3}-1.064\times10^{3}

E=-0.045\times10^{3}\ N/C

We need to calculate the force exerted on an electron

Using formula of electric field

E = \dfrac{F}{q}

F=E\times q

Put the value into the formula

F=-0.045\times10^{3}\times(-1.6\times10^{-19})

F=7.2\times10^{-18}\ N

Hence, The force exerted on an electron is 7.2\times10^{-18}\ N

8 0
3 years ago
Why is a warm, tropical cumulus cloud more likely to produce precipitation than a cold, stratus cloud?
Lelu [443]

Explanation:

Warm,tropical cumulus cloud more likely to produce precipitation because they have high liquid content, strong and consistent updraft, these clouds are very thick. Moreover, they have large range of cloud droplet sizes. Whereas, stratus cloud have somewhat opposite characteristics, hence tropical cumulus clouds produce more precipitate.  

7 0
3 years ago
Monochromatic light is incident on a metal surface, and electrons are ejected. If the intensity of the light increases, what wil
drek231 [11]

Answer:The rate of ejection of photoelectrons will increase

Explanation:

If the frequency of incident monochromatic light is held constant and its intensity is increased, the rate of ejection of photoelectrons from the metal surface increases with increase in intensity of the monochromatic light. More current flows due to more ejection of photoelectrons.

4 0
3 years ago
Other questions:
  • Is everyone in your class able to hear a quiet sound equally well?
    6·1 answer
  • The speed of a light wave in a certain transparent material is 0.701 times its speed in vacuum, which is 3.00×108 m/s . When yel
    10·1 answer
  • Where do we hear loud sound, at antinode or node?​
    7·1 answer
  • 5. A group of at
    8·1 answer
  • What potential difference is dropped over the 60 ohms resistor
    13·1 answer
  • Which is the correct interpretation of the formula mgf2? the lattice contains 1 magnesium atom for every 2 fluorine atoms. the l
    7·1 answer
  • A = 40
    11·1 answer
  • The chimney of an oil lamp cracks when touched with rhe brade of cold knife?why<br>​
    10·2 answers
  • A scuba diver stays underwater for 30 minutes. How is this possible when the air tank is so small?​
    9·1 answer
  • Why the surface of Mars is red?​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!