Technically, this delivers a lot of energy into the Earth, but it’s
spread out over a large enough area that it doesn’t do much more than
leave footprints in a lot of gardens. A slight pulse of pressure spreads
through the North American continental crust and dissipates with little
effect. The sound of all those feet hitting the ground creates a loud,
drawn-out roar which lasts many seconds.
Answer:
The vehicle displacement is 9.90 feet.
Explanation:
Given that,
Height of tree = 4.5 feet
Distance = 33 feet
According to figure,
We need to calculate the value of l
Using Pythagorean theorem

We need to calculate the vehicle displacement
Using horizontal component
Vehicle displacement =horizontal component of pulled rope

Where,
is angle between rope and ground
d = pulled length of rope


Hence, The vehicle displacement is 9.90 feet.
Speed with which initially car is moving is 21 m/s
Reaction time = 0.50 s
distance traveled in the reaction time d = v t
d = 21 * 0.50 = 10.5 m
deceleration after this time = -10 m/s^2
now the distance traveled by the car after applying bakes



so total distance moved before it stop
d = 22.05 + 10.5 = 32.55 m
so the distance from deer is 35 - 32.55 = 2.45 m
now to find the maximum speed with we can move we will assume that we will just touch the deer when we stop
so our distance after brakes are applied is d = 35 - 10.5 = 24.5 m
again by kinematics



so maximum speed would be 22.1 m/s
Answer:
73N
Explanation:Just multiply 1.2^2 by 50
Those two units can be compared to a 'mile per hour' and a 'mile per hour - hour'.
One is a rate. The other is a quantity, after maintaining a rate for some time.
-- 'Joule' is a unit of energy. It's the amount of work (energy) you do
when you push with a force of 1 newton though a distance of 1 meter.
Lifting 10 pound of beans 3 feet off the floor takes about 40.7 joules of energy.
-- 'Watt' is a <u><em>rate</em></u> of using energy . . . 1 joule per second.
If you lift 10 pounds 3 feet off the floor in 1 second, your <em>power</em> is 40.7 watts.
-- 'Watt-second' is the amount of energy used in one second,
at the rate of 1 joule per second . . . 1 joule.
-- 'Watt-hour' is the amount of energy used in one hour,
at the rate of 1 joule per second . . . 3,600 joules.
-- 'Kilowatt' is a bigger <em>rate</em> of using energy . . . 1,000 joules per second.
-- 'Kilowatt - second' is the amount of energy used in one second,
at the rate of 1,000 joules per second . . . 1,000 joules .
-- 'Kilowatt - hour' is the amount of energy used in one hour,
at the rate of 1,000 joules per second . . . 3,600,000 joules .
Depending on where you live, 3,600,000 joules of energy bought
from the electric company costs something between 5¢ and 25¢.