Answer:
Vi = 94.64 m/s
Explanation:
I order to find out the initial velocity of the object, we can use third equation of motion:
2ah = Vf² - Vi²
where,
a = acceleration = -9.8 m/s²
h = maximum height covered by object = 460 m - 3 m = 457 m
Vf = Final Velocity = 0 m/s (since, object momentarily stops at highest point)
Vi = Initial Velocity = ?
Therefore,
2(-9.8 m/s²)(457 m) = (0 m/s)² - Vi²
Vi = √8957.2 m²/s²
<u>Vi = 94.64 m/s</u>
Answer:
The sound intensity level in the car is 57.2 dB.
Explanation:
Sound intensity level in decibels, β = 10 log (I/I₀); where I = 0.525 × 10⁻⁶ W/m², I₀ = 1.0 × 10⁻¹² W/m²
β (dB) = 10 log ((0.525 × 10⁻⁶)/(1.0 × 10⁻¹²)) = 10 × 5.72 = 57.2 dB
Hope this Helps!!!
Kepler's 3rd law is given as
P² = kA³
where
P = period, days
A = semimajor axis, AU
k = constant
Given:
P = 687 days
A = 1.52 AU
Therefore
k = P²/A³ = 687²/1.52³ = 1.3439 x 10⁵ days²/AU³
Answer: 1.3439 x 10⁵ (days²/AU³)
Answer:
The maximum velocity is 1.58 m/s.
Explanation:
A spring pendulum with stiffness k = 100N/m is attached to an object of mass m = 0.1kg, pulls the object out of the equilibrium position by a distance of 5cm, and then lets go of the hand for the oscillating object. Calculate the achievable vmax.
Spring constant, K = 100 N/m
mass, m = 0.1 kg
Amplitude, A = 5 cm = 0.05 m
Let the angular frequency is w.

The maximum velocity is

As mass increases kinetic energy also increases; kinetic energy is directly proportional to mass so whatever is done to either affects the other one the same. i hope this helps :)