Answer:
At the highest point the velocity is zero, the acceleration is directed downward.
Explanation:
This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.
I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.
At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.
Answer: 75V
Explanation:
Given that,
total resistance (Rtotal) = 150Ω
Current (I) = 0.5A
Change in electric potential (V) = ?
Recall that potential difference is the product of amount of current and the amount of resistance in the circuit. And its unit is volts.
So, apply the formula V = I x Rtotal
V = 0.5A x 150Ω
V = 75V
Thus, the change in electric potential across the circuit is 75 Volts
Answer:
Chemical to kinetic and thermal.
Explanation:
You would eat the food (chemical) than you would jog and move around (kinetic). While running your body would also give off heat (thermal).Than your body would sweat to cool itself down.
Oml... Its physical... Unless if your turning that wheat into bread by using fire it would be chemical.
Yeeeeeeeetus
Answer:
The thrown rock strike 2.42 seconds earlier.
Explanation:
This is an uniformly accelerated motion problem, so in order to find the arrival time we will use the following formula:

So now we have an equation and unkown value.
for the thrown rock

for the dropped rock

solving both equation with the quadratic formula:

we have:
the thrown rock arrives on t=5.4 sec
the dropped rock arrives on t=7.82 sec
so the thrown rock arrives 2.42 seconds earlier (7.82-5.4=2.42)