To calculate the atomic mass of a single atom of an element, add up the mass of protons and neutrons.
pH of solution = 13.033
<h3>Further explanation</h3>
Given
2.31 g Ba(OH)₂
250 ml water
Required
pH of solution
Solution
Barium hydroxide is fully ionized, means that Ba(OH)₂ is a strong base
So we use a strong base formula to find the pH
[OH ⁻] = b. Mb where
b = number of OH⁻
/base valence
Mb = strong base concentration
Molarity of Ba(OH)₂(MW=171.34 g/mol) :

Ba(OH)₂ ⇒ Ba²⁺ + 2OH⁻(b=valence=2)
[OH⁻]= 2 . 0.054
[OH⁻] = 0.108
pOH= - log 0.108
pOH=0.967
pOH+pH=14
pH=14-0.967
pH=13.033
A mole is a very important unit of measurement that chemists use. A mole of something means you have 602,214,076,000,000,000,000,000 of that thing, like how having a dozen eggs means you have twelve eggs. Chemists have to measure using moles for very small things like atoms, molecules, or other particles.
<h3>What is mole and atoms?</h3>
The number of atoms or other particles in a mole is the same for all substances. The mole is related to the mass of an element in the following way: one mole of carbon-12 atoms has 6.02214076 × 1023 atoms and a mass of 12 grams.
<h3>Why is the mole unit so important?</h3>
It represents the link between the microscopic and the macroscopic, especially in terms of mass. A mole of a substance has the same mass in grams as one unit (atom or molecules) has in atomic mass units.
Learn more about mole here:
<h3>
brainly.com/question/1427235</h3><h3 /><h3>#SPJ4</h3>