Answer: -Ionic bonds form when one atom provides electrons to another atom. Covalent Bonds: Covalent bonds form when two atom shares their valence electrons. Metallic Bonds: Metallic bonds form when a variable number of atoms share a variable number of electrons in a metal lattice.
-Covalent Bonds.
Covalent Compounds. Contain no metals and no ions. Covalent compounds contain nonmetals only.
Example:
Ionic Compounds. A metal with a non-metal. Doesn't use prefixes for naming. Name the metal and change the nonmetal ending to -ide.
Explanation: Ionic bonds form when a nonmetal and a metal exchange electrons, while covalent bonds form when electrons are shared between two nonmetals. An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions.
213034 torr is the osmotic pressure.
Explanation:
osmotic pressure is calculated by the formula:
osmotic pressure= iCrT
where i= no. of solute
c= concentration in mol/litre
R= Universal Gas constant
T = temp
It is given that solution is 3% which is 3gms in 100 ml.
let us calculate the concentration in moles/litre
3gm/100ml*1000ml/1L*1mol NaCl/55.84g NaCl
= 5.372 gm/litre
Putting the values in the formula, Temp in Kelvin 318.5K
osmotic pressure= 2*5.372*0.083 * 318.5 Gas constant 0.083
= 284.023 bar or 213018 torr. c= 5.372 moles/L
i=2 for NaCl
Balanced chemical equation:
2 C2H2 + 5 O2 = 4 CO2 + 2 H2O
2 moles C2H2 ---------------- 5 moles O2
moles C2H2 ------------------ 84 moles O2
moles C2H2 = 84 * 2 / 5
molesC2H2 = 168 / 5 => 33.6 moles of C2H2
In the year 1909, Robert A. Millikan and Harvey Fletcher performed the oil drop experiment.
The concentration of cell is less than that of the solution .
Hence the cell will be called as hypotonic and the solution will be called as hypertonic.
in order to balance the concentration on the two sides of cell (inside and outside in the solution) there will be movement of solvent particles (through semipermeable membrane ) from cell (lower concentration of solute) to solution (higher concentration of solute).
Thus cell will shrink.