Well, first of all, there's no such thing as "fully charged" for a capacitor.
A capacitor has a "maximum working voltage", because of mechanical
or chemical reasons, just like a car has a maximum safe speed. But
anywhere below that, cars and capacitors do their jobs just fine, without
any risk of failing.
So we have a capacitor that has some charge on it, and therefore some
voltage across it. From the list of choices above . . .
<span>-- Both plates have the same amount of charge.
Yes. And both plates have opposite TYPES of charge.
One plate is loaded with electrons and is negatively charged.
The other plate is missing electrons and is positively charged.
-- There is a potential difference between the plates.
Yes. That's the "voltage" mentioned earlier.
It's a measure of how badly the extra electrons want to jump
from the negative plate to the positive plate.
-- Electric potential energy is stored.
Yes. It's the energy that had to be put into the capacitor
to move electrons away from one plate and cram them
onto the other plate.
</span>
Answer:
Respuesta correcta, opción D: Es la fuerza que un cuerpo ejerce perpendicularmente sobre el área en la que actúa.
Explanation:
La definición de presión es la fuerza que un cuerpo ejerce en dirección perpendicular sobre el área en la que actúa.
Cuando se aplica una fuerza sobre la superficie de un cuerpo, la presión es la siguiente:

En donde:
F es la fuerza aplicada.
A es el área del cuerpo.
Por lo tanto la opción correcta es la D: es la fuerza que un cuerpo ejerce perpendicularmente sobre el área en la que actúa.
Espero que se sea de utilidad!
Answer:
The vehicle with the most mass
Explanation:
Momentum is the quantity of motion in a body and it is dependent on its mass and velocity.
Momentum = m x v
m is the mass
v is the velocity
Now,
Both mass and velocity are directly proportional to momentum. Since the two bodies moves with the same velocity, the vehicle with the most mass will have the greatest momentum