Answer:
0.038 g of reactant
Explanation:
Data given:
Heat release for each gram of reactant consumption = 36.2 kJ/g
mass of reactant that release 1360 J of heat = ?
Solution:
As 36.2 kJ of heat release per gram of reactant consumption so first we will convert KJ to J
As we know
1 KJ = 1000 J
So
36.2 kJ = 36.2 x 1000 = 36200 J
So it means that in chemical reaction 36200 J of heat release for each gram of reactant consumed so how much mass of reactant will be consumed if 1360 J heat will release
Apply unity formula
36200 J of heat release ≅ 1 gram of reactant
1360 J of heat release ≅ X gram of reactant
Do cross multiplication
X gram of reactant = 1 g x 1360 J / 36200 J
X gram of reactant = 0.038 g
So 0.038 g of reactant will produce 1360 J of heat.
Convert the child weight (37.3 pounds) to kilograms
37.3 lb x 0.453 kg /1lb = "A kg"
multiply the dose (9.00mg/kg) by the weight of the child to find how much you need to give him
A kg * 9.00 mg/1kg = "B mg"
calculate the mL of suspension dividing the "B mg" by the concentration of the suspension 60.0 mg/mL
B mg * 1mL/ 60.0 mg = C mL <span>oxcarbazepine</span>
The dilution formula can be used to find the volume needed
c1v1 = c2v2
Where c1 is concentration and v1 is volume of the concentrated solution
And c2 is concentration and v2 is volume of the diluted solution to be prepared
c1 - 0.33 M
c2 - 0.025 M
v2 - 25 mL
Substituting these values in the equation
0.33 M x v1 = 0.025 M x 25 mL
v1 = 1.89 mL
Therefore 1.89 mL of the 0.33 M solution needs to be diluted up to 25 mL to make a 0.025 M solution
2, 8,6 because it has to be in a configuration of 2,8,8
Answer:
Law of Conservation of Energy
Explanation: