Answer:
1) Magnetic resonance imaging (MRI) is a test that uses powerful magnets, radio waves, and a computer to make detailed pictures of the inside of your body.
Your doctor can use this test to diagnose you or to see how well you've responded to treatment. Unlike X-rays and computed tomography (CT) scans, MRIs don’t use the damaging ionizing radiation of X-rays.
2) MRIs employ powerful magnets which produce a strong magnetic field that forces protons in the body to align with that field. When a radiofrequency current is then pulsed through the patient, the protons are stimulated, and spin out of equilibrium, straining against the pull of the magnetic field.
3) Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from torn ligaments to tumors. MRIs are very useful for examining the brain and spinal cord.
4) The magnetic fields that change with time create loud knocking noises which may harm hearing if adequate ear protection is not used. They may also cause peripheral muscle or nerve stimulation that may feel like a twitching sensation. The radiofrequency energy used during the MRI scan could lead to heating of the body.
pls mark brainliest
Answer:
Yes it would be different on Earth and the moon
Answer: The free ending nerves.
Explanation:
At our fingertips, we have a lot of sensory nerve endings, that give information about changes that occur at your skin.
Like touching something with a given texture, feeling pain, or noticing changes in temperature.
There are different types of nerve endings, particularly the ones responsible to detect pain, and temperature are the free nerve endings.
So Marcus may have the free nerve endings damaged.
No. An atom is made up of 3 kinds of particles, protons, neutrons, and electrons. Protons and neutrons make up the center of the atom.
Answer:
In physics, special relativity (also known as the special theory of relativity) is the generally accepted and experimentally confirmed physical theory regarding the relationship between space and time.
We need special relativity in order to solve for quantum gravity. ... The earth was expanding (thus, it's mass was expanding) through space in all directions in order to create gravity **OOPS** forgot, specifically at an accelerating rate… OR… The space must be pushing toward or down on the earth, from every direction.