Answer:
no
Explanation:
Radium is silvery, lustrous, soft, intensely radioactive. It readily oxidizes on exposure to air, turning from almost pure white to black. Radium is luminescent, corrodes in water to form radium hydroxide. Although is the heaviest member of the alkaline-earth group it is the most volatile.
Answer:
See the answer below , please.
Explanation:
In a decomposition reaction, a certain compound is "broken" to give two or more different products.
An example for compound AB, giving as products A and B:
AB -> A + B
In the case of water:
2H20 -> 2H2 + 02, water decomposes giving Hydrogen and Oxygen
exactly 22.0 grams
because freezing is a physical change not a chemicl change..so nothing is taken away or added
CH4 + 2 O2 ---> CO2 + 2 H2O Q = 891,6 kJ / mol CH4
1 mol CH4 = 16 g
16 g ---- 891,6 kJ
x g ----- 272 kJ
x = 272 kJ × 16 g / 891,6 kJ = 4,88 g
You must burn 4,88 g of CH4.
:-) ;-)
Answer:
Inter-molecular forces and molecular volumes are the chief reasons for lower measured pressure
Explanation:
The kinetic theory assumes that gas particles occupy a negligible fraction of the total volume of the gas. It also assumes that the force of attraction between gas molecules is zero.
However, during high pressure, the volume of the gas particles are not negligible compare to the total gas volume and as such the volume of a real gas under such condition is higher than the Ideal gas. Vander-waal attempted to modify the ideal gas equation by subtracting the excess volume from the ideal equation. The increased volume is the reason the measured pressure of a real gas is less than an ideal gas
On the other hand, close to condensation, the other assumption of negligible forces of attraction becomes invalid. As inter-molecular distances decrease, inter-molecular forces increase reducing the bombardment of the wall of the container due to restricted particle movement and lower measured gas pressure.