If a particle undergoes simple harmonic motion with an amplitude of 0.21 meters, this means that the maximum displacement of the particle from its resting position is 0.21. For one period, it traveled from its starting position which is twice the amplitude and then back to its original position which is another distance that is twice the amplitude as well. Therefore, the total distance it traveled is 2*amplitude + 2*amplitude = 2*0.21 + 2*0.21 = 0.42 + 0.42 = 0.84 meters.
Answer:
15.7m/s
Explanation:
To solve this problem, we use the right motion equation.
Here, we have been given the height through which the ball drops;
Height of drop = 14.5m - 1.9m = 12.6m
The right motion equation is;
V² = U² + 2gh
V is the final velocity
U is the initial velocity = 0
g is the acceleration due to gravity = 9.8m/s²
h is the height
Now insert the parameters and solve;
V² = 0² + 2 x 9.8 x 12.6
V² = 246.96
V = √246.96 = 15.7m/s
Answer:
I will answer in English.
Here we will use the relation
Velocity*time = distance
So:
a) velocity = 3m/s
time = 2s
Distance = 3m/s*2s = 6m
b) velocity = 2m/s
time = 3.5s
Distance = 2m/s*3.5s = 7m
c) velocity = 10m/s
time = 0.5s
Distance = 10m/s*0.5s = 5m
d) velocity = 4m/s
time = 2.5s
Distance = 4m/s*2.5s = 9m
e) velocity = 1.5m/s
time = 5s
Distance = 1.5m/s*5s = 7.5m
If the velocity of the chair is constant, then the net force acting on it is zero.
The force you exert to keep it going is equal and opposite to the force of friction.
A foul occurs when a player or coach breaks a rule covering either contact with an opposing player of unsportsmanlike action. Basketball is a so-called non-contact sport but basketball rules recognize that is not really possible to have 10 players running around a small area without making some contact.