Answer: There are five signs of chemical change
- Color Change
- Production of an odor
- Change of Temperature
- Evolution of Gas (bubbles start to form)
- Precipitate (starts to form a solid)
When these signs start to form you know chemical change is at work.
Hope this helps :)
Answer:
0.1M NH3
Explanation:
The boiling point of aqueous solutions depend on the nature of intermolecular interactions present. KBr will yield an ionic solution but NH3 will yield a molecular solution having hydrogen bonds. The degree of hydrogen bonding in the aqueous solution will further increase with the concentration of the solution.
Remember that experimental data shows that hydrogen bonds are strong bonds that lead to a significant increase in the boiling point of solutions. Hence 0.1M NH3 solution will have a higher boiling point due to intermolecular hydrogen bonding in the solution.
Answer : The types of radiation known to be emitted by radioactive elements are, alpha particles, beta particles, or gamma rays.
Explanation :
Radioactive decay : It the process in which an unstable atomic nucleus loses energy by emitting the radiations like, alpha particles, beta particles, or gamma rays.
The naturally occurring radioactive elements are, radium, thorium, and uranium.
Alpha particle : It is also known as alpha radiation or alpha ray that consists of 2 protons and 2 neutrons that are bound together into a particle that is identical to the helium nucleus. It is produced in the process of alpha decay.
Beta particle : It is also known as beta radiation or beta ray. During the beta decay process, a high energy and speed electron or positron are emitted by the radioactive decay of atomic nucleus.
Gamma particle : It is also a gamma radiation or gamma ray that is arising from the radioactive decay of atomic nuclei. It has shortest wavelength waves and imparts high photon energy can pass through most forms of matters because they have no mass.
Answer:
30.4 g. NH3
Explanation:
This problem tells us that the hydrogen (H2) is the limiting reactant, as there is "an excess of nitrogen." Using stoichiometry (the relationship between the various species of the equation), we can see that for every 3 moles of H2 consumed, 2 moles of NH3 are produced.
But before we can use that relationship to find the number of grams of ammonia produced, we need to convert the given grams of hydrogen into moles:
5.4 g x [1 mol H2/(1.008x2 g.)] = 2.67857 mol H2 (not using significant figures yet; want to be as accurate as possible)
Now, we can use the relationship between H2 and NH3.
2.67857 mol H2 x (2 mol NH3/3 mol H2) = 1.7857 mol NH3
Now, we have the number of moles of ammonia produced, but the answer asks us for grams. Use the molar mass of ammonia to convert.
1.7857 mol NH3 x 17.034 g. NH3/mol NH3 = 30.4 g. NH3 (used a default # of 3 sig figs)
Answer:
ΔG°rxn = +50.8 kJ/mol
Explanation:
It is possible to obtain ΔG°rxn of a reaction at certain temperature from ΔH°rxn and S°rxn, thus:
<em>ΔG°rxn = ΔH°rxn - T×S°rxn (1)</em>
In the reaction:
2 HNO3(aq) + NO(g) → 3 NO2(g) + H2O(l)
ΔH°rxn = 3×ΔHfNO2 + ΔHfH2O - (2×ΔHfHNO3 + ΔHfNO)
ΔH°rxn = 3×33.2kJ/mol + (-285.8kJ/mol) - (2×-207.0kJ/mol + 91.3kJ/mol)}
ΔH°rxn = 136.5kJ/mol
And S°:
S°rxn = 3×S°NO2 + S°H2O - (2×S°HNO3 + S°NO)
ΔH°rxn = 3×0.2401kJ/molK + (0.0700kJ/molK) - (2×0.146kJ/molK + 0.2108kJ/molK)
ΔH°rxn = 0.2875kJ/molK
And replacing in (1) at 298K:
ΔG°rxn = 136.5kJ/mol - 298K×0.2875kJ/molK
<em>ΔG°rxn = +50.8 kJ/mol</em>
<em />