Answer:
The force exerted by the ball on the bat has a magnitude of 100 N and its direction is exactly opposite to that of the force exerted by the bat on the ball.
Explanation:
Recall that Newton's third law tells us that : "For every action, there is an equal and opposite reaction."
Therefore if the bat acts on the ball with a force of 100 N, the ball acts on the bat with a similar magnitude of force (100 N) but direction opposite to the original force.

Answer:
<h2>1116.9 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 438 × 2.55
We have the final answer as
<h3>1116.9 N</h3>
Hope this helps you
<span>If your options are:
A.Both momentum and kinetic energy are vector quantities.
B.Momentum is a vector quantity and kinetic energy is a scalar quantity.
C.Kinetic energy is a vector quantity and momentum is a scalar quantity.
D.Both momentum and kinetic energy are scalar quantities.
</span>
The answer on the question given is letter B.<span>Momentum is a vector quantity and kinetic energy is a scalar quantity.</span>
I'd answer that but I can't text graphs and tables...
Answer:
F = 1.047 10⁻² N
Explanation:
Let's use kinematics to find the angular acceleration
w = w₀ + α t
as for rest w₀ = 0
w = α t
α = w / t
let's reduce the magnitudes to the SI system
w = 1000 rev / min (2π rad/ 1 rev) (1 min/ 60s) = 104.72 rad / s
m = 1.00 g (1 kg / 1000 g) = 1,000 10⁻³ kg
r = 10.0 cm (1 m / 100 cm) = 0.100 m
let's calculate
α = 104.72 / 1
α = 104.72 rad / s²
angular and linear variables are related
a = α r
a = 104.72 0.100
a = 10.47 m / s²
finally we substitute in Newton's second law
F = 1 10⁻³ 10.47
F = 1.047 10⁻² N