1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scZoUnD [109]
2 years ago
6

A merry-go-round of radius R, shown in the figure, is rotating at constant angular speed. The friction in its bearings is so sma

ll that it can be ignored. A sandbag of mass m is dropped onto the merry-go-round, at a position designated by r. The sandbag does not slip or roll upon contact with the merry-go-round.
The figure shows a top view of a merry-go-round of radius capital R rotating counterclockwise. A sandbag is located on the merry-go-round at a distance lowercase r from the center.

Rank the following different combinations of m and r on the basis of the angular speed of the merry-go-round after the sandbag "sticks" to the merry-go-round.
Physics
1 answer:
mel-nik [20]2 years ago
6 0

The angular speed of the merry-go-round reduced more as the sandbag is

placed further from the axis than increasing the mass of the sandbag.

The rank from largest to smallest angular speed is presented as follows;

[m = 10 kg, r = 0.25·R]

              {} ⇩

[m = 20 kg, r = 0.25·R]

              {} ⇩

[m = 10 kg, r = 0.5·R]

              {} ⇩

[m = 10 kg, r = 0.5·R] = [m = 40 kg, r = 0.25·R]

              {} ⇩

[m = 10 kg, r = 1.0·R]

Reasons:

The given combination in the question as obtained from a similar question online are;

<em>1: m = 20 kg, r = 0.25·R</em>

<em>2: m = 10 kg, r = 1.0·R</em>

<em>3: m = 10 kg, r = 0.25·R</em>

<em>4: m = 15 kg, r = 0.75·R</em>

<em>5: m = 10 kg, r = 0.5·R</em>

<em>6: m = 40 kg, r = 0.25·R</em>

According to the principle of conservation of angular momentum, we have;

I_i \cdot \omega _i = I_f \cdot \omega _f

The moment of inertia of the merry-go-round, I_m = 0.5·M·R²

Moment of inertia of the sandbag = m·r²

Therefore;

0.5·M·R²·\omega _i = (0.5·M·R² + m·r²)·\omega _f

Given that 0.5·M·R²·\omega _i is constant, as the value of  m·r² increases, the value of \omega _f decreases.

The values of m·r² for each combination are;

Combination 1: m = 20 kg, r = 0.25·R; m·r² = 1.25·R²

Combination 2: m = 10 kg, r = 1.0·R; m·r² = 10·R²

Combination 3: m = 10 kg, r = 0.25·R; m·r² = 0.625·R²

Combination 4: m = 15 kg, r = 0.75·R; m·r² = 8.4375·R²

Combination 5: m = 10 kg, r = 0.5·R; m·r² = 2.5·R²

Combination 6: m = 40 kg, r = 0.25·R; m·r² = 2.5·R²

Therefore, the rank from largest to smallest angular speed is as follows;

Combination 3 > Combination 1 > Combination 5 = Combination 6 >

Combination 2

Which gives;

[<u>m = 10 kg, r = 0.25·R</u>] > [<u>m = 20 kg, r = 0.25·R</u>] > [<u>m = 10 kg, r = 0.5·R</u>] > [<u>m = </u>

<u>10 kg, r = 0.5·R</u>] = [<u>m = 40 kg, r = 0.25·R</u>] > [<u>m = 10 kg, r = 1.0·R</u>].

Learn more here:

brainly.com/question/15188750

You might be interested in
1.
irga5000 [103]

Answer:

Explanation:

solution is found below

6 0
3 years ago
PLEASEEE HELPPP!!!
Alja [10]

Given :

A mover slides a refrigerator weighing 650 N at a constant velocity across the floor a distance of 8.1 m.

The force of friction between the refrigerator and the floor is 230 N.

To Find :

How much work has been performed by the mover on the refrigerator.

Solution :

Since, refrigerator is moving with constant velocity.

So, force applied by the mover is also 230 N ( equal to force of friction ).

Now, work done in order to move the refrigerator is :

W = Force\times distance\\\\W = 230 \times 8.1\ N\ m\\\\W = 1863\ N\ m

Hence, this is the required solution.

3 0
3 years ago
Which statement is true?
Fynjy0 [20]
If it's Kepler's law of equal areas you're talking about,
then the first of the four statements is true.
4 0
3 years ago
Read 2 more answers
The main strength and weakness of traditional economy?
olasank [31]

the main strenght is each person has a job and the weekness is they are poor


4 0
3 years ago
if the train is accelerating and the bisicle is traveling at a constant velocity, what do you know about their speed?
Vanyuwa [196]
The train is accelerating meaning there is a change in the velocity so the speed is either increasing or decreasing depending. The bicycle is travelling at a constant velocity meaning it is travelling at a constant speed.
3 0
3 years ago
Other questions:
  • Compressed gases aren't ideal. Let's consider a gas that's non-ideal only because the volume available to each of the N molecule
    10·1 answer
  • A rocket blasts off vertically from rest on the launch pad with a constant upward acceleration of 2.30 m/s2. At 20.0 s after bla
    15·1 answer
  • Give an example in which there are clear distinctions among distance traveled, displacement, and magnitude of displacement. spec
    15·1 answer
  • Two point charges exert a 5.50 N force on each other. What will the force become if the distance between them is increased by a
    14·1 answer
  • Bernoulli's principle can be used to explain the lift force on an airplane wing. How must an airplane's wing be designed to ensu
    10·2 answers
  • What are the three key points to seismic waves​
    11·1 answer
  • Which is a sub-atomic particle?
    15·1 answer
  • At one point in the circuit, there is an LED and a resistor in parallel with one another. If you measure the voltage drop across
    8·1 answer
  • Multiply the number 4.48E-8 by 5.2E-4 using Google. What is the correct answer in scientific notation?
    8·1 answer
  • Andre is playing air hockey with Alexa and shoots his puck across the essentially frictionless surface to score a goal. What fre
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!