Answer:
Following are the solution to this question:
Explanation:
In this question, some of the information is missing that's why its solution can be defined as follows:

Using formula:


Pressure= hqg
H=depth
q=density
g=gravity
h=0.2
q=7
g=10
0.2*7*10= 14pa
FINAL ANSWER = 14pa
Answer:
an increase in gasses that absorb heat
Explanation:
Greenhouse effect refers to the gradual increase in the earth's temperature due to an increase in the concentration of certain gases in the atmosphere. These gases are called greenhouse gases and they include; water vapour, nitrogen 1 oxide, carbon IV oxide etc. Green house effect is said to occur when heat radiating outwards from the earth surface towards space is trapped close to the earth's surface due to the presence of greenhouse gases in the atmosphere.
Greenhouse effect leads to increase in the temperature of the earth, melting of polar ice caps and possibly flooding due to a rise in sea levels.
Greenhouse gases act as glass in a greenhouse. They allow heat to pass through onto the earth surface but trap the heat and prevent it from being radiated outwards back to space. Thereby increasing the surface temperature of the earth.
Answer:
the answer is A & C & E just did the lab
Explanation:
Answer: 0.29 kN
Explanation:
We have the following data:
is the weight of the astronaut on Earth
is the free fall acceleration due gravity on Earth (directed downwards)
is the free fall acceleration due gravity on Zuton (directed downwards)
is the acceleration of the spaceship at litoff (directed upwards)
We have to find the <u>magnitude of the force</u>
the space ship exerts on the astronaut.
Firstly, we have to know weight has a direct relation with the mass and the acceleration due gravity. In the case of Earth is:
(1)
Where
is the mass of the atronaut.
Isolating
:
(2)
(3)
(4)
Now that we know the mass of the astronaut, we can find its weight on Zuton:
(5)
(6)
(7)
Then, we can calculate the force the space ship exerts on the astronaut by the following equation:
(8)
Isolating
:
(9)
(10)
(11)
Finally: