Answer:

Explanation:
Given that,
The mass of the paperclip, m = 1.8 g = 0.0018 kg
We need to find the energy obtained. The relation between mass and energy is given by :

Where
c is the speed of light
So,

So, the energy obtained is
.
To solve this problem we will apply the linear motion kinematic equations. From the definition of the final velocity, as the sum between the initial velocity and the product between the acceleration (gravity) by time, we will find the final velocity. From the second law of kinematics, we will find the vertical position traveled.

Here,
v = Final velocity
= Initial velocity
g = Acceleration due to gravity
t = Time
At t = 4s, v = -30m/s (Downward)
Therefore the initial velocity will be


Now the position can be calculated as,

When it has the ground, y=0 and the time is t=4s,


Therefore the cliff was initially to 41.6m from the ground
After plugging all the data into the equation, the result of the relative centrifugal force (RCF) is measured in terms of g.
<h3>What is relative centrifugal force?</h3>
The relative centrifugal force (RCF) or the g force is the radial force generated by the spinning rotor as expressed relative to the earth's gravitational force.
RCF = ac/g
where;
- ac is centripetal acceleration
- g is acceleration due to gravity

where;
<h3>For example, </h3>
Find the maximum RCF of the JS-4.2 rotor can be obtained from its maximum speed (4200 rpm) and its rmax (250 mm);

Thus, after plugging all the data into the equation, the result is measured in terms of g.
Learn more about relative centrifugal force here: brainly.com/question/26887699
#SPJ1
I think it would be d because the spring or whatever was pushing until it reached the farthest it could then it would pull down but idrk