1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aloiza [94]
3 years ago
14

When you are noting the results of your decision, you will ?

Physics
2 answers:
Nutka1998 [239]3 years ago
5 0
Judge a source's reliability 
Makovka662 [10]3 years ago
3 0
The answer is Judge a Sources Reliability.
You might be interested in
Trong máy phát điện xoay chiều ba pha khi tổng điện áp tức thời của cuộn 1,2 là e1+e2=120V thì điện áp tức thời của cuộn 3 là
NARA [144]

Answer:

I just noticd i dont speak this launguage

Explanation:

8 0
3 years ago
Planets are not uniform inside. Normally, they are densest at the center and have decreasing density outward toward the surface.
elena-s [515]

Answer:

g=13.42\frac{m}{s^2}

Explanation:

1) Notation and info given

\rho_{center}=13000 \frac{kg}{m^3} represent the density at the center of the planet

\rho_{surface}=2100 \frac{kg}{m^3} represent the densisty at the surface of the planet

r represent the radius

r_{earth}=6.371x10^{6}m represent the radius of the Earth

2) Solution to the problem

So we can use a model to describe the density as function of  the radius

r=0, \rho(0)=\rho_{center}=13000 \frac{kg}{m^3}

r=6.371x10^{6}m, \rho(6.371x10^{6}m)=\rho_{surface}=2100 \frac{kg}{m^3}

So we can create a linear model in the for y=b+mx, where the intercept b=\rho_{center}=13000 \frac{kg}{m^3} and the slope would be given by m=\frac{y_2-y_1}{x_2-x_1}=\frac{\rho_{surface}-\rho_{center}}{r_{earth}-0}

So then our linear model would be

\rho (r)=\rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r

Since the goal for the problem is find the gravitational acceleration we need to begin finding the total mass of the planet, and for this we can use a finite element and spherical coordinates. The volume for the differential element would be dV=r^2 sin\theta d\phi d\theta dr.

And the total mass would be given by the following integral

M=\int \rho (r) dV

Replacing dV we have the following result:

M=\int_{0}^{2\pi}d\phi \int_{0}^{\pi}sin\theta d\theta \int_{0}^{r_{earth}}(r^2 \rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r)

We can solve the integrals one by one and the final result would be the following

M=4\pi(\frac{r^3_{earth}\rho_{center}}{3}+\frac{r^4_{earth}}{4} \frac{\rho_{surface}-\rho_{center}}{r_{earth}})

Simplyfind this last expression we have:

M=\frac{4\pi\rho_{center}r^3_{earth}}{3}+\pi r^3_{earth}(\rho_{surface}-\rho_{center})

M=\pi r^3_{earth}(\frac{4}{3}\rho_{center}+\rho_{surface}-\rho_{center})

M=\pi r^3_{earth}[\rho_{surface}+\frac{1}{3}\rho_{center}]

And replacing the values we got:

M=\pi (6.371x10^{6}m)^2(\frac{1}{3}13000 \frac{kg}{m^3}+2100 \frac{kg}{m^3})=8.204x10^{24}kg

And now that for any shape the gravitational acceleration is given by:

g=\frac{MG}{r^2_{earth}}=\frac{(6.67408x10^{-11}\frac{m^3}{kgs^2})*8.204x10^{24}kg}{(6371000m)^2}=13.48\frac{m}{s^2}

4 0
3 years ago
Now put the names of the planets in increasing order based on their distance from the sun
Anika [276]
The eight planets of the Solar System arranged in order from the sun:

Mercury: 46 million km / 29 million miles (.307 AU)
Venus: 107 million km / 66 million miles (.718 AU)
Earth: 147 million km / 91 million miles (.98 AU)
Mars: 205 million km / 127 million miles (1.38 AU)
Jupiter: 741 million km /460 million miles (4.95 AU)
Saturn: 1.35 billion km / 839 million miles (9.05 AU)
Uranus: 2.75 billion km / 1.71 billion miles (18.4 AU)
Neptune: 4.45 billion km / 2.77 billion miles (29.8 AU)

Astronomers often use a term called astronomical unit (AU) to represent the distance from the Earth to the Sun.

+ Pluto (Dwarf Planet): 4.44 billion km / 2.76 billion miles (29.7 AU)
5 0
3 years ago
Can the object be in motion if the net force acting on it is zero? explain.
artcher [175]
When object travels with uniform velocity, no force acts on it. hence , yes.
3 0
3 years ago
Boyles law<br> squeezing a balloon is one way to burst it. Why? ...?
KiRa [710]
According to Boyle's Law,  volume is inversely proportional to pressure. It means if the volume of a gas goes up the pressure goes down and if the volume of the gas goes up the pressure goes down. When the pressure of air inside the inflated balloon is more than the atmospheric pressure outside the balloon. And also when the density inside is greater than the density outside. The molecules inside the balloon move and bang around the inner walls which produces force, which provides the pressure of an enclosed air.
6 0
4 years ago
Other questions:
  • Calculate the kinetic energy of a 100.0-kg meteor approaching the Earth at a speed of 10.0 km/s. Remember that 1 km = 1000 m.
    12·2 answers
  • According to Le Châtelier’s principle, what happens when a system in equilibrium is subjected to a change?
    14·2 answers
  • Please help!!! These questions are about specific heat capacity.
    13·1 answer
  • If a question asks about velocity in a projectile, is it referring to the vertical or horizontal velocity? An example where this
    14·1 answer
  • What is the potential energy of a 3 kg- ball that is on the ground?
    7·1 answer
  • Identify conditions that can contribute to an increase in wind erosion.
    9·2 answers
  • When a candle burns, which forms of energy does the chemical energy in the candle change to?
    15·1 answer
  • Beta particles will:
    15·2 answers
  • A player uses a hockey stick to push a puck at a constant velocity across the ice. The weight of the puck is 170 N. The
    14·2 answers
  • What is the role of MnO2 in a dry cell?​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!