Answer:
2
1
2
1
3
1
Explanation:
I'm pretty sure these are right. you might want to go back and check the first and third, but the other 4 are right
Answer:
ΔL = 0.66 m
Explanation:
The change in length on an object due to rise in temperature is given by the following equation of linear thermal expansion:
ΔL = αLΔT
where,
ΔL = Change in Length of the bridge = ?
α = Coefficient of linear thermal expansion = 11 x 10⁻⁶ °C⁻¹
L = Original Length of the Bridge = 1000 m
ΔT = Change in Temperature = Final Temperature - Initial Temperature
ΔT = 40°C - (-20°C) = 60°C
Therefore,
ΔL = (11 x 10⁻⁶ °C⁻¹)(1000 m)(60°C)
<u>ΔL = 0.66 m</u>
Answer:
ε = 2 V/cm
Explanation:
To calculate the mobility inside this bar, we just need to apply the expression that let us determine the mobility. This expression is the following:
ε = ΔV / L
Where:
ε: Hole mobility inside the bar
ΔV: voltage applied in the bar
L: Length of the bar
We already have the voltage and the length so replacing in the above expression we have:
ε = 2 V / 1 cm
<h2>
ε = 2 V/cm</h2><h2>
</h2>
The data of the speed can be used for further calculations, but in this part its not necessary.
Hope this helps
La masa molar de 65 litros de SO2 es igual a 64,1 g/mol.
<h3>Masa molar</h3>
La masa molar de un compuesto depende de su masa presente en 1 mol, entonces:

Para calcular la masa molar de un compuesto, simplemente suma las masas de cada elemento en el compuesto, así:


Así, la masa molar de 65 litros de SO2 es igual a 64,1 g/mol.
Obtenga más información sobre la masa molar en: brainly.com/question/17109809
If you are pushing the coin across the table at a constant rate, the friction of the table and the horizontal force of your hand pushing are equal, and the coin itself moves at a constant rate. If you push a coin and let it go, there is no horizontal force keeping the coin going. Friction slows the coin to a stop. In both cases, the gravitational downward pull of Earth is equally but oppositely resisted by the upward push of table on the coin.