Answer:
For an atom to have a balanced charged, the number of protons shall be equal to the number of electrons of an atom. proton is the positive part of an atom whereas electrons are the negative part of an atom. Only if the number of protons will be equal to the number of electron, the atom will be able to be neutral.
If the number of electron will be more, then the atom will be negative. If the number of electron will be less, then the atom will be positive.
Answer:
170 W
Explanation:
Applying
P = VI.................... Equation 1
Where P = Power generated in watt, V = Voltage supplied to the circuit, I = Current running through the circuit.
From the question,
Given: V = 17 V, I = 10 A
Substitute these values into equation 1
P = (17×10)
P = 170 Watt.
Hence the power generated is 170 W.
The right option is A. 170 W
Answer:
V_{a} - V_{b} = 89.3
Explanation:
The electric potential is defined by
= - ∫ E .ds
In this case the electric field is in the direction and the points (ds) are also in the direction and therefore the angle is zero and the scalar product is reduced to the algebraic product.
V_{b} - V_{a} = - ∫ E ds
We substitute
V_{b} - V_{a} = - ∫ (α + β/ y²) dy
We integrate
V_{b} - V_{a} = - α y + β / y
We evaluate between the lower limit A 2 cm = 0.02 m and the upper limit B 3 cm = 0.03 m
V_{b} - V_{a} = - α (0.03 - 0.02) + β (1 / 0.03 - 1 / 0.02)
V_{b} - V_{a} = - 600 0.01 + 5 (-16.67) = -6 - 83.33
V_{b} - V_{a} = - 89.3 V
As they ask us the reverse case
V_{b} - V_{a} = - V_{b} - V_{a}
V_{a} - V_{b} = 89.3
The answer is 2.49 x 10^5 KJ. This was obtained (1) use the formula for specific heat to achieve Q or heat then (2) get the energy to melt the copper lastly (3) Subtract both work and the total energy required to completely melt the copper bar is achieved.
Yes I'm pretty sure you can