First, we have to see how K2O behaves when it is dissolved in water:
K2O + H20 = 2 KOH
According to reaction K2O has base properties, so it forms a hydroxide in water.
For the reaction next relation follows:
c(KOH) : c(K2O) = 1 : 2
So,
c(KOH)= 2 x c(K2O)= 2 x 0.005 = 0.01 M = c(OH⁻)
Now we can calculate pH:
pOH= -log c(OH⁻) = -log 0.01 = 2
pH= 14-2 = 12
1.0 mole ---------- 6.02x10²³ molecules
4.5 moles -------- ?
4.5 * 6,02x10²³ / 1.0
= 2.709x10²⁴ molecules units
<u>Answer:</u> The equilibrium concentration of HCl is 
<u>Explanation:</u>
We are given:
Moles of
= 0.564 moles
Volume of vessel = 1.00 L
Molarity is calculated by using the equation:

Molarity of 
The given chemical equation follows:

<u>Initial:</u> 0.564
<u>At eqllm:</u> 0.564-x x x
The expression of
for above equation follows:
![K_c=[NH_3][HCl]](https://tex.z-dn.net/?f=K_c%3D%5BNH_3%5D%5BHCl%5D)
The concentration of pure solid and pure liquid is taken as 1.
We are given:

Putting values in above equation, we get:

Negative sign is neglected because concentration cannot be negative.
So, ![[HCl]=2.26\times 10^{-3}M](https://tex.z-dn.net/?f=%5BHCl%5D%3D2.26%5Ctimes%2010%5E%7B-3%7DM)
Hence, the equilibrium concentration of HCl is 
Answer:
Explanation:
Sure you can - Mercury and water are both liquid at room temperature and atmospheric pressure. But Mercury is much much heavier or denser than water. So much that the two substances will not mix. The lighter water can be separated by pouring it out while the heavy Mercury will stay in the bottom.