Answer:
v= 13 m/s
Explanation:
Velocity is defined as the derivative of displacement with respect to time
v= ds/dt
Known data
s(t) = 5t + 2t² : distance that the ball has rolled after t seconds
vi= 5 m/s : initial velocity
t= 2 s
Problem develoment
s(t) = 5t + 2t²
v= ds/dt= 5 + 4t : velocity of the ball in function of the time
We replace t =2 s in the equation of velocity
v= 5 + 4(2)
v= 13 m/s : velocity after 2 seconds
Answer:
(a) 0.0171 V
Explanation:
A = 0.09 m^2, dB/dt = 0.190 T/s
(a) According to the law of electromagntic induction
e = dФ / dt
e = A dB / dt
e = 0.09 x 0.190 = 0.0171 V
(b)
as we know
i = e / R
we can find induced current by dividing induced emf by resistance
Answer:
a) ΔV = 25.59 V, b) ΔV = 25.59 V, c) v = 7 10⁴ m / s, v/c= 2.33 10⁻⁴ ,
v/c% = 2.33 10⁻²
Explanation:
a) The speed they ask for electrons is much lower than the speed of light, so we don't need relativistic corrections, let's use the concepts of energy
starting point. Where the electrons come out
Em₀ = U = e DV
final point. Where they hit the target
Em_f = K = ½ m v2
energy is conserved
Em₀ = Em_f
e ΔV = ½ m v²
ΔV =
mv²/e (1)
If the speed of light is c and this is 100% then 1% is
v = 1% c = c / 100
v = 3 10⁸/100 = 3 10⁶6 m/ s
let's calculate
ΔV =
ΔV = 25.59 V
b) Ask for the potential difference for protons with the same kinetic energy as electrons
K_p = ½ m v_e²
K_p =
9.1 10⁻³¹ (3 10⁶)²
K_p = 40.95 10⁻¹⁹ J
we substitute in equation 1
ΔV = Kp / M
ΔV = 40.95 10⁻¹⁹ / 1.6 10⁻¹⁹
ΔV = 25.59 V
notice that these protons go much slower than electrons because their mass is greater
c) The speed of the protons is
e ΔV = ½ M v²
v² = 2 e ΔV / M
v² =
v² = 49,035 10⁸
v = 7 10⁴ m / s
Relation
v/c = 
v/c= 2.33 10⁻⁴
Answer:
False
Explanation:
Let's consider the definition of the angular momentum,

where
is the moment of inertia for a rigid body. Now, this moment of inertia could change if we change the axis of rotation, because "r" is defined as the distance between the puntual mass and the nearest point on the axis of rotation, but still it's going to have some value. On the other hand,
so
unless
║
.
In conclusion, a rigid body could rotate about certain axis, generating an angular momentum, but if you choose another axis, there could be some parts of the rigid body rotating around the new axis, especially if there is a projection of the old axis in the new one.
They are positive and remain inside the nucleus.