1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katena32 [7]
2 years ago
7

What is the first thing a person must do before anything can be done today corroded area

Engineering
1 answer:
melamori03 [73]2 years ago
8 0

Answer:

Explanation:

We have learned that three things are required for the anodic and cathodic steps of corrosion to occur: an electrolyte, an exposed metal surface, and an electron acceptor. It follows, then, that we can prevent corrosion by removing one of these essential conditions.

You might be interested in
Answer every question of this quiz
Reil [10]

I'd say number 4, number 3 looks like an exhaust valve

5 0
4 years ago
Suzanne Brett wants to borrow $55,000 from the bank. The interest rate is 6.5% and the term is for 5 years.
Otrada [13]

Answer: $14575

$55000

6.5%

5 years

Total Payment Amount: $72875

Yearly payment :$72875/5= $14575

8 0
2 years ago
What kind of robot should i make
schepotkina [342]

Answer:

It really depends on what you want it to do. I would make one that does chores around the house so I don't have to.

Explanation:

4 0
2 years ago
The volume of 1.5 kg of helium in a frictionless piston-cylinder device is initially 6 m3. Now, helium is compressed to 2 m3 whi
coldgirl [10]

Answer:

The initial temperature will be "385.1°K" as well as final will be "128.3°K".

Explanation:

The given values are:

Helium's initial volume, v₁ = 6 m³

Mass, m = 1.5 kg

Final volume, v₂ = 2 m³

Pressure, P = 200 kPa

As we know,

Work, W=p(v_{2}-v_{1})

On putting the estimated values, we get

⇒            =200000(2-6)

⇒            =200000\times (-4)

⇒            =800,000 \ N.m

Now,

Gas ideal equation will be:

⇒  pv_{1}=mRT_{1}

On putting the values. we get

⇒  200000\times 6=1.5\times 2077\times T_{1}

⇒  T_{1}=\frac{1200000}{3115.5}

⇒       =385.1^{\circ}K (Initial temperature of helium)

and,

⇒  pv_{2}=mRT_{2}

On putting the values, we get

⇒  200000\times 2=1.5\times 2077\times T_{2}

⇒  T_{2}=\frac{400000}{3115.5}

⇒       =128.3^{\circ}K (Final temperature of helium)

3 0
3 years ago
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
Other questions:
  • why are apartments called apartments if there together? and why are buildings called buildings if there already built? hmmmm
    7·1 answer
  • Create a program named IntegerFacts whose Main() method declares an array of 10 integers.Call a method named FillArray to intera
    12·1 answer
  • If a pendulum takes 2 sec to swing in each direction, find the period and the frequency of the swing
    15·1 answer
  • A 4-pole, 3-phase induction motor operates from a supply whose frequency is 60 Hz. calculate: 1- the speed at which the magnetic
    6·1 answer
  • You are evaluating the lifetime of a turbine blade. The blade is 4 cm long and there is a gap of 0.16 cm between the tip of the
    9·1 answer
  • A ten story hospital has to constructed with the footprint of 45,000 ft^2. Subsurface soil consist of soft clay layer of 10 ft.
    15·1 answer
  • Is the science of measurement
    6·1 answer
  • Azimuth is another name for
    12·2 answers
  • Can you answer it ????,(^^)​
    12·2 answers
  • The steel bracket is used to connect the ends of two cables. if the allowable normal stress for the steel is sallow = 30 ksi, de
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!