Definite Shape and Definite Volume is a solid.
NO Definite Shape and Definite Volume is a liquid.
NO Definite Shape and NO Definite Volume is a gas.
The amount of current required to produce 75. 8 g of iron metal from a solution of aqueous iron (iii)chloride in 6. 75 hours is 168.4A.
The amount of Current required to deposit a metal can be find out by using The Law of Equivalence. It states that the number of gram equivalents of each reactant and product is equal in a given reaction.
It can be found using the formula,
m = Z I t
where, m = mass of metal deposited = 75.8g
Z = Equivalent mass / 96500 = 18.6 / 96500 = 0.0001
I is the current passed
t is the time taken = 75hour = 75 × 60 = 4500s
On subsituting in above formula,
75.8 = E I t / F
⇒ 75.8 = 0.0001 × I × 4500
⇒ I = 168.4 Ampere (A)
Hence, amount of current required to deposit a metal is 168.4A.
Learn more about Law of Equivalence here, brainly.com/question/13104984
#SPJ4
Conductivity is a measurement of the ability of an aqueous solution to transfer an electrical current.
Explanation:
To calculate the conductivity of a solution you simply multiply the concentration of each ion in solution by its molar conductivity and charge then add these values for all ions in solution.
The answer is: Survival of the form that will leave the most copies of itself in successive generations.
"Survival of the fittest" is a phrase that originated from Darwinian evolutionary theory.
This is example of natural selection and adaptation.
Genetic variation is important to the population's ability to survive in different situations that affect natural selection.
The environment is constantly changing and different alleles are favored.
Answer : The concentration of
is, 
Explanation :
When we assume this reaction is driven to completion because of the large excess of one ion then we are assuming limiting reagent is
and
is excess reagent.
First we have to calculate the moles of KSCN.


Moles of KSCN = Moles of
= Moles of
= 
Now we have to calculate the concentration of ![[Fe(SCN)]^{2+}](https://tex.z-dn.net/?f=%5BFe%28SCN%29%5D%5E%7B2%2B%7D)
![\text{Concentration of }[Fe(SCN)]^{2+}=\frac{\text{Moles of }[Fe(SCN)]^{2+}}{\text{Volume of solution}}](https://tex.z-dn.net/?f=%5Ctext%7BConcentration%20of%20%7D%5BFe%28SCN%29%5D%5E%7B2%2B%7D%3D%5Cfrac%7B%5Ctext%7BMoles%20of%20%7D%5BFe%28SCN%29%5D%5E%7B2%2B%7D%7D%7B%5Ctext%7BVolume%20of%20solution%7D%7D)
Total volume of solution = (6.00 + 5.00 + 14.00) = 25.00 mL = 0.025 L
![\text{Concentration of }[Fe(SCN)]^{2+}=\frac{1.08\times 10^{-5}mol}{0.025L}=4.32\times 10^{-4}M](https://tex.z-dn.net/?f=%5Ctext%7BConcentration%20of%20%7D%5BFe%28SCN%29%5D%5E%7B2%2B%7D%3D%5Cfrac%7B1.08%5Ctimes%2010%5E%7B-5%7Dmol%7D%7B0.025L%7D%3D4.32%5Ctimes%2010%5E%7B-4%7DM)
Thus, the concentration of
is, 