Answer:
44.1613858478 m/s
Explanation:
t = Time taken
u = Initial velocity = 0
v = Final velocity
s = Displacement = 99.4
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s² = a

If air resistance was absent Dan Koko would strike the airbag at 44.1613858478 m/s
The Law of Conservation of Energy
The normal force acting on the object is 500 N in the upward direction
<u>Explanation:</u>
As George is applying a downward force, the normal force will be in the upward direction. The normal force will be exerted due to the acceleration due to gravity exerted on the object.
So, as per Newton's second law, the normal force acting on the object can be measured by the product of mass of the object and the acceleration due to gravity acting on the object.
But as the acceleration due to gravity is a downward acting acceleration and the normal force is a upward acting force, so the acceleration will be having a negative sign in the formula.

Here, acceleration due to gravity g = -10 m/s² and mass is given as 50 kg, then
Normal force = 50 × (-10) = -500 N
So, the normal force acting on the object is 500 N in the upward direction.
Answer:
A. 
B. 
C. 
Explanation:
The capacitance of a capacitor is its ability to store charges. For parallel-plate capacitors, this ability depends the material between the plates, the common plate area and the plate separation. The relationship is

is the capacitance,
is the common plate area,
is the plate separation and
is the permittivity of the material between the plates.
For air or free space,
is
called the permittivity of free space. In general,
where
is the relative permittivity or dielectric constant of the material between the plates. It is a factor that determines the strength of the material compared to air. In fact, for air or vacuum,
.
The energy stored in a capacitor is the average of the product of its charge and voltage.

Its charge,
, is related to its capacitance by
(this is the electrical definition of capacitance, a ratio of the charge to its voltage; the previous formula is the geometric definition). Substituting this in the formula for
,

A. Substituting for
in
,

B. When the distance is
,


C. When the distance is restored but with a dielectric material of dielectric constant,
, inserted, we have
