Answer:
3.46 seconds
Explanation:
Since the ball is moving in circular motion thus centripetal force will be acting there along the rope.
The equation for the centripetal force is as follows -
Where,
is the mass of the ball,
is the speed and
is the radius of the circular path which will be equal to the length of the rope.
This centripetal force will be equal to the tension in the string and thus we can write,

and, 
Thus,
m/s.
Now, the total length of circular path = circumference of the circle
Thus, total path length = 2πr = 2 × 3.14 × 2 = 12.56 m
Time taken to complete one revolution =
=
= 3.46 seconds.
Thus, the mass will complete one revolution in 3.46 seconds.
The colder the more likely it is to become a liquid
Answer:
a. The moment of the 4 N force is 16 N·m clockwise
b. The moment of the 6 N force is 12 N·m anticlockwise
Explanation:
In the figure, we have;
The distance from the point 'O', to the 6 N force = 2 m
The position of the 6 N force relative to the point 'O' = To the left of 'O'
The distance from the point 'O', to the 4 N force = 4 m
The position of the 4 N force relative to the point 'O' = To the right of 'O'
a. The moment of a force about a point, M = The force, F × The perpendicular distance of the force from the point
a. The moment of the 4 N force = 4 N × 4 m = 16 N·m clockwise
b. The moment of the 6 N force = 6 N × 2 m = 12 N·m anticlockwise.
Answer:
<em>The PE of the mass increased by 6,972.95 J</em>
Explanation:
<u>Gravitational Potential Energy</u>
It's the energy stored in an object because of its vertical position or height in a gravitational field.
It can be calculated with the equation:
U=m.g.h
Where m is the mass of the object, h is the height with respect to a fixed reference, and g is the acceleration of gravity or 9.8 m/s^2.
We are given the mass of m=16 slug raised by a height h=10 ft. Both units will be converted to SI standard:
1 slug = 14.59 Kg, thus
16 slug = 16*14.59 Kg=233.44 Kg
1 ft = 0.3048 m, thus:
10 ft = 10*0.3048 m = 3.048 m
Thus, the PE of the mass increased by:
U = 233.44 * 9.8 * 3.048 = 6,972.95 J
the PE of the mass increased by 6,972.95 J
Answer:
The net acceleration of the boat is approximately 6.12 m/s² downwards
Explanation:
The buoyant or lifting force applied to the boat = 790 N
The mass of the boat lifted by the buoyant force = 214 kg
The force applied to a body is defined as the product of the mass and the acceleration of the body. Therefore, the buoyant force, F, acting on the boat can be presented as follows;
Fₐ = F - W
The weight of the boat = 214 × 9.81 = 2099.34 N
Therefore;
Fₐ = 790 - 2099.34 = -1309.34 N
Fₐ = Mass of the boat × The acceleration of the boat
Given that the buoyant force, Fₐ, is the net force acting on the boat, we have;
F = Mass of the boat × The net acceleration of the boat
F = -1309.34 N = 214 kg × The net acceleration of the boat
∴ The net acceleration of the boat = -1309.34 N/(214 kg) ≈ -6.12 m/s²
The net acceleration of the boat ≈ 6.12 m/s² downwards