Answer:
Acceleration is percieved, not constant velocity.
Explanation:
You are most aware when the vehicle is accelerating. At constant velocity you would not be aware of the motion. Only if the system is accelerated the dynamics must be solved considering a pseudo-force (of inertial origin) acting.
It's because of this that:
(A) False. The acceleration can be detected from the inside of a closed car.
(B) False. You would be aware of the motion, but not because humans can sense speed but acceleration.
(C) False. Constant velocity cannot be felt in a closed car.
(D) False. Again, you can't feel constant speed.
Given:
Gasoline pumping rate, R = 5.64 x 10⁻² kg/s
Density of gasoline, D = 735 kg/m³
Radius of fuel line, r = 3.43 x 10⁻³ m
Calculate the cross sectional area of the fuel line.
A = πr² = π(3.43 x 10⁻³ m)² = 3.6961 x 10⁻⁵ m²
Let v = speed of pumping the gasoline, m/s
Then the mass flow rate is
M = AvD = (3.6961 x 10⁻⁵ m²)*(v m/s)*(735 kg/m³) = 0.027166v kg/s
The gasoline pumping rate is given as 5.64 x 10⁻² kg/s, therefore
0.027166v = 0.0564
v = 2.076 m/s
Answer: 2.076 m/s
The gasoline moves through the fuel line at 2.076 m/s.
Acrostic poem is a poem where the initials of the main word is given a respective sentence starting with that initial.
C- Can you see any changes happened in our surrounding?
L- Let me open your eyes and wake up to the reality.
I- Ignoring the unprecedented changes in our environment is worsening.
M- Making a move? Let's start it now.
A- Another day might not come.
T- Take this opportunity to show to world that we care.
E- Even to smallest thing that we can share.
Distance for which the bike is ridden = 30 km
Speed at which the bike is driven = 0.75 km/minute
Let us assume the number of minutes taken to travel the distance of 30 km = x
Now we already know the formula of speed can be written as
Speed = Distance traveled/ Time taken
0.75 = 30/x
0.75x = 30
x = 30/0.75
= 40 minutes
So the time taken for riding a distance of 30 km will be 40 minutes. I hope this procedure is simple enough for you to understand.
Answer:
Turn the heater on
Explanation:
There are two main forces involved in a balloon flight
The downward force is the total weight of the balloon: the air it contains, the gas bag, the basket, the passengers, etc.
The upward force is the weight of the of the air the balloon displaces.
During level flight
,
buoyant force = weight of displaced air - total weight of balloon
If you increase the temperature of the air in the bag, the air molecules spread out and leave through the bottom of the bag.
The balloon still has the same volume, so the weight of displaced outside air stays the same.
However, the balloon has lost some hot inside air, so its total weight decreases.
The upward force is greater than the downward force, so the balloon rises.