The reaction between HNO3 and Ba(OH)2 is given by the equation below;
2HNO3 + Ba(OH)2 = Ba(NO3)2 + 2H2O
Moles of Barium hydroxide used;
= 0.200 × 0.039 l
= 0.0078 Moles
The mole ratio of HNO3 and Ba(OH)2 is 2: 1
Therefore; moles of nitric acid used will be;
= 0.0078 ×2 = 0.0156 moles
But; 0.0156 moles are equal to a volume of 0.10
The concentration of Nitric acid will be;
= (0.0156 × 1)/0.1
= 0.156 M
If Enthalpy is positive, the reaction is endothermic.
If Enthalpy is negative, the reaction is exothermic.
Answer:
what kind of math is this
Explanation:
The molecules in system #2 have a higher kinetic energy because they are at a higher temperature than molecules in system#1.
<h3>Heating of water molecules</h3>
Temperature is defined as a measure of the average kinetic energy of the molecules of a body. The higher the temperature of a body, the higher the kinetic energy of the molecules of the body.
In both systems, we have water molecules that have the same formula H2O. However, the molecules in system #2 have a higher kinetic energy because they are at a higher temperature than molecules in system#1.
Learn more about kinetic energy of molecules: brainly.com/question/2731193