
<em><u>The Rutherford model shows that an atom is mostly empty space, with electrons orbiting a fixed, positively charged nucleus in set, predictable paths.</u></em>
Complete question is;
Chemical reactivity of alkali metals increases down the group while reactivity of halogens decreases down the group. Give reasons
Answer:
Explained below
Explanation:
Alkali metals exhibit reactivity due to their electropositivity. Now, for alkalis, their electro-positivity increases down their group. Since their reactivity increases with increase in electropositivity, it means their reactivity also increases down the group.
Whereas, the reactivity of halogens occurs as a result of their electronegativity. Now, electronegativity for halogens decreases down the group. Since their reactivity decreases with decrease in electronegativity, it means that their reactivity will also decrease down the group.
Answer:
Thermometer A, because it measures accurately to the tenths digit.
I'm sure that to calculate the freezing point depression <span>subtract</span> solution's freezing point and the freezing point of it's pure solvent. According to the formula.
Answer:
105.8 g of Na would be required
Explanation:
Let's think the reaction:
2Na(s) + Cl₂(g) → 2NaCl (s)
1 mol of chlorine reacts with 2 moles of sodium
Then, 2.3 moles of Cl₂ would react with (2.3 .2) / 1 = 4.6 moles
Let's determine the mass of them.
4.6 mol . 23 g/mol = 105.8 g