1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shtirlitz [24]
2 years ago
10

Match the following with the type of force described.

Physics
2 answers:
sweet-ann [11.9K]2 years ago
6 0
We need more context
Wewaii [24]2 years ago
5 0
We need an image pls
You might be interested in
Which statement about projectile motion is true?
Svetllana [295]

C. The range of a projectile increases with an increase in the angle of launch.

3 0
3 years ago
Read 2 more answers
FIGURE 2 shows a 1.5 kg block is hung by a light string which is wound around a smooth pulley of radius 20 cm. The moment of ine
Sindrei [870]

Answer:

At t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

Explanation:

First, we consider all the forces acting on the pulley.

There is only one force acting on the pulley, and that is due to the 1.5 kg mass attached to it.

Therefore, the torque on the pulley is

\tau=Fd=mg\cdot R

where m is the mass of the block, g is the acceleration due to gravity, and R is the radius of the pulley.

Now we also know that the torque is related to angular acceleration α by

\tau=I\alpha

therefore, equating this to the above equation gives

mg\cdot R=I\alpha

solving for alpha gives

\alpha=\frac{mgR}{I}

Now putting in m = 1.5 kg, g = 9.8 m/s^2, R = 20 cm = 0.20 m, and I = 2 kg m^2 gives

\alpha=\frac{1.5\cdot9.8\cdot0.20}{2}\boxed{\alpha=1.47s^{-2}}

Now that we have the value of the angular acceleration in hand, we can use the kinematics equations for the rotational motion to find the angular velocity and the number of revolutions at t = 4.2 s.

The first kinematic equation we use is

\theta=\theta_0+\omega_0t+\frac{1}{2}\alpha t^2

since the pulley starts from rest ω0 = 0 and theta = 0; therefore, we have

\theta=\frac{1}{2}\alpha t^2

Therefore, ar t = 4.2 s, the above gives

\theta=\frac{1}{2}(1.47)(4.2)^2

\boxed{\theta=12.97}

So how many revolutions is this?

To find out we just divide by 2 pi:

\#\text{rev}=\frac{\theta}{2\pi}=\frac{12.97}{2\pi}\boxed{\#\text{rev}=2.06}

Or about 2 revolutions.

Now to find the angular velocity at t = 4.2 s, we use another rotational kinematics equation:

\omega^2=w^2_0+2\alpha(\Delta\theta)_{}

Since the pulley starts from rest, ω0 = 0. The change in angle Δθ we calculated above is 12.97. The value of alpha we already know to be 1.47; therefore, the above becomes:

\omega^2=0+2(1.47)(12.97)w^2=38.12\boxed{\omega=6.17.}

Hence, the angular velocity at t = 4.2 w is 6. 17 rad / s

To summerise:

at t = 4.2 s

Angular velocity: 6. 17 rad /s

The number of revolutions: 2.06

3 0
1 year ago
The "Giant Swing" at a county fair consists of a vertical central shaft with a number of horizontal arms attached at its upper e
Mashcka [7]

Answer:

Explanation:

When the central shaft rotates , the seat along with passenger also rotates . Their rotation requires a centripetal force of mw²R where m is mass of the passenger and w is the angular velocity and R is radius of the circle in which the passenger rotates.

This force is provided by a component of   T , the tension in the rope from which the passenger hangs . If θ be the angle the rope makes with horizontal ,

T cos θ will provide the centripetal force . So

Tcosθ = mw²R

Tsinθ component will balance the weight .

Tsinθ = mg

Dividing the two equation

Tanθ = \frac{g}{\omega^2R}

Hence for a given w , θ depends upon g or weight .

8 0
3 years ago
Read 2 more answers
Warning triangles, flares, a vehicle's hazard lights, or emergency vehicles ahead, are all clues that you might be approaching _
daser333 [38]

Answer:

B. A collision scene

Explanation:

It could have been a parade ceremony, but, if you notice the vehicle's hazard lights or an emergency vehicle ahead, it is common sense to figure that they is a collision scene nearby.

8 0
3 years ago
A positively charged atom has
Ulleksa [173]
It has a positive charge
8 0
3 years ago
Read 2 more answers
Other questions:
  • Written:
    9·1 answer
  • n the metric system the acceleration due to gravity near Earth's surface is about 9.81 meters per second per second. What is the
    6·1 answer
  • Air flows through a nozzle at a steady rate. At the inlet the density is 2.21 kg/m3 and the velocity is 20 m/s. At the exit, the
    15·1 answer
  • Plate tectonics suggests that the__________floats and moves on the__________ .
    10·1 answer
  • Two 100 kg bumper cars are moving toward each other in opposite directions. Car A is moving at 8 m/s and Car B at –10 m/s when t
    6·1 answer
  • Which of the following best describes the circuit shown below?
    12·2 answers
  • The pedals on a bicycle give a mechanical advantage by allowing you to turn the pedals a __________ distance to turn the _______
    8·1 answer
  • Enample: the motion of moon around the earth Describe the motion of an object in which its speed constant but the velocity is ch
    7·2 answers
  • A stone tumbles into a mine shaft strikes bottom after falling for 3.8 seconds. How deep is the mine shaft
    11·1 answer
  • A 0.50-kg block slides across a tabletop with an initial velocity of 20 cm/s and comes to rest in a distance of 70 cm. Find the
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!