pH is the measure of the hydrogen ion concentration while pOH is of hydroxide ion concentration in the solution. The pH is 0.939 and pOH is 13.061 pOH.
pH is the concentration of the hydrogen ion released or gained by the species in the solution that depicts the acidity and basicity of the solution.
pOH is the concentration of the hydroxide ion in the solution and is dependent on the pH as an increase in pH decreases the pOH and vice versa.
Both HCl and HBr are strong acids and gets ionized 100 % in the solution. If we let 1 L of solution for the acids then the concentration of the hydrogen ion will be 0.100 M.
Since both completely dissociate we would just add the molarities of each of the H+ ions together and then calculate the PH and POH from that :
HCL(0.040M)----> H+(0.040M) +CL-(0.040M)
HBr(0.075M)----> H+(0.075M) +Br-(0.075M)
so 0.040M (H+ from HCL) + 0.075M (H+ from HBr) = 0.115M H+ in total.
pH is calculated as:
pH = -log[H+]
Substituting values in the equation:
log(0.115M)= 0.939 pH
pOH is calculated as:
14 - pH = pOH
Substituting values in the equation above:
14 - 0.939= 13.061 pOH
Therefore, pH is 0.939 and pOH is 13.061.
Learn more about pH and pOH here:
brainly.com/question/2947041
#SPJ4
I am sorry but do not listen to the link above it is a virus and it will be installed if you do stay safe and spread the word
Answer:
V = 85.619 L
Explanation:
To solve, we can use the ideal gas law equation, PV = nRT.
P = pressure (645 mmHg)
V = volume (?)
n = amount of substance (3.00 mol)
R = ideal gas constant (62.4 L mmHg/mole K)
T = temperature (295K)
Now we would plug in the appropriate numbers into the equation using the information given and solve for V.
(645)(V) = (3.00)(62.4)(295)
(V) = (3.00)(62.4)(295)/645
V = 85.619 L
Answer:
option A is correct answer