It is a comet that was a comet
Answer:
≈ 2.1 R
Explanation:
The moment of inertia of the bodies can be calculated by the equation
I = ∫ r² dm
For bodies with symmetry this tabulated, the moment of inertia of the center of mass
Sphere
= 2/5 M R²
Spherical shell
= 2/3 M R²
The parallel axes theorem allows us to calculate the moment of inertia with respect to different axes, without knowing the moment of inertia of the center of mass
I =
+ M D²
Where M is the mass of the body and D is the distance from the center of mass to the axis of rotation
Let's start with the spherical shell, axis is along a diameter
D = 2R
Ic =
+ M D²
Ic = 2/3 MR² + M (2R)²
Ic = M R² (2/3 + 4)
Ic = 14/3 M R²
The sphere
Is =
+ M [
²
Is = Ic
2/5 MR² + M
² = 14/3 MR²
² = R² (14/3 - 2/5)
= √ (R² (64/15)
= 2,066 R
D. distance
A light-year is the distance light would travel in 1 year.
Answer: In a longitudinal wave, the crest and trough of a transverse wave correspond respectively to the compression, and the rarefaction. A compression is when the particles in the medium through which the wave is traveling are closer together than in its natural state, that is, when their density is greatest.
Answer:
The magnitude of the magnetic field is 1.01T and its direction is in the negative x direction
Explanation:
In order to calculate the magnitude and direction of the magnetic field, you take into account the following equation for the magnetic force on the proton:
(1)
v: speed of the proton = 9.9*10^5 m/s
q: charge of the proton = 1.6*10^-19C
B: magnetic field = ?
FB: magnetic force on the proton = 1.6*10^-13N
When the proton travels in the positive y direction (^j), you have that the proton experiences a force in the positive z direction (+^k). To obtain this direction of the magnetic force on the proton, it is necessary that the magnetic field points in the negative x direction, in fact, you have:
^j X (-^i) = -(-^k)=^k
To obtain the magnitude of the magnetic field you use:

The magnitude of the magnetic field is 1.01T and its direction is in the negative x direction