1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KonstantinChe [14]
2 years ago
8

A boy weighing 445 N swings on a 2-m long swing. If his horizontal speed at the lowest point is 3 m/s, what total force must the

ropes holding the swing be able to withstand?
Physics
1 answer:
levacccp [35]2 years ago
8 0

Explanation:

We need to calculate the centripetal force:

Fc = W + F

With Fc being the centripetal force, W the weight of the boy, F the centrifugal force (apparent).

We know that we can calculate the apparent centrifugal force thank to the formula:

F = (m·v²)/r = 204N

So we can write:

Fc = W + F = 445N + 204N = 649N

You might be interested in
The electric field must be zero inside a conductor in electrostatic equilibrium, but not inside an insulator. It turns out that
pav-90 [236]

Answer:

The permittivity of rubber is  \epsilon  = 8.703 *10^{-11}

Explanation:

From the question we are told that

     The  magnitude of the point charge is  q_1 =  70 \ nC  =  70 *10^{-9} \  C

      The diameter of the rubber shell is  d = 32 \ cm  =  0.32 \ m

       The Electric field inside the rubber shell is  E =  2500 \ N/ C

The radius of the rubber is  mathematically evaluated as

              r =  \frac{d}{2} =  \frac{0.32}{2}  =  0.16 \ m

Generally the electric field for a point  is in an insulator(rubber) is mathematically represented as

         E =  \frac{Q}{ \epsilon }  *  \frac{1}{4 *  \pi r^2}

Where \epsilon is the permittivity of rubber

    =>     E  *  \epsilon  *  4 * \pi *  r^2 =  Q

   =>      \epsilon  =  \frac{Q}{E *  4 *  \pi *  r^2}

substituting values

            \epsilon  =  \frac{70 *10^{-9}}{2500 *  4 *  3.142 *  (0.16)^2}

            \epsilon  = 8.703 *10^{-11}

7 0
3 years ago
Practice 3: Label the correct phase that would result from the Moon and Earth in these positions.
Anna71 [15]

Answer:

both position I think in nor

5 0
3 years ago
Read 2 more answers
Calculate a rate of cooling down of air from 80 C to 5C Show calculation. Give an answer in cubic meters per minute and cfm.
antoniya [11.8K]

Explanation:

Given that,

Rate of cooling of air

Initial temperature= 80°C

Final temperature = 5°C

We need to calculate

Using newton's law of cooling

\dfrac{dT}{dt}=c(T-T_{0})

\dfrac{dT}{dt}=c(\dfrac{T_{1}+T_{2}}{2}-T_{0})

Where, dT=T_{1}-T_{2}

Here, T =\dfrac{T_{1}+T_{2}}{2}

T_{0} = 25°C  (surrounding temperature)

dt = 1 minute

\dfrac{dT}{dt}=c(\dfrac{T_{1}+T_{2}}{2}-T_{0})

Put the value into the formula

\dfrac{80-5}{1}=c(\dfrac{85}{2}-25)

c=\dfrac{75}{17.5}

c=4.285\ cubic\ meter/minute

Hence, This is the required answer.

3 0
3 years ago
What happens when the voltage increases and the resistance stays the same in a electrical circuit?
Orlov [11]

Answer:

The current in the circuit increases

Explanation:

The ohm's law states that the potential across a circuit is proportional to the current in the circuit.

                                             V ∝ I

Where 'V' is the potential difference across the circuit and 'I' is the current in the circuit.

The proportionality constant present in the equation is the resistance of the circuit. Hence, the equation becomes

                                             V = IR

According to the equation, when V is directly proportional to 'I' where 'R' remains as constant, then the change in 'V is brings change in 'I' to make the equation valid.

So, when there is an increase in the voltage, the current on the circuit increases.

4 0
3 years ago
A 50.-kilogram rock rolls off the edge of a cliff. if it is traveling at a speed of 24.2 m/s when it hits the ground, what is th
ElenaW [278]

The correct answer to the question is : 29.88 m.

EXPLANATION :

As per the question, the mass of the rock m = 50 Kg.

The rock is rolling off the edges of the cliff.

The final velocity of the rock when it hits the ground v = 24 .2 m/s.

Let the height of the cliff is h.

The potential energy gained by the rock at the top of the cliff = mgh.

Here, g is known as acceleration due to gravity, and g = 9.8\ m/s^2

When the rock rolls off the edge of the cliff, the potential energy is converted into kinetic energy.

When the rock hits the ground, whole of its potential energy is converted into its kinetic energy.

The kinetic energy of the rock when it touches the ground is given as -

                Kinetic energy K.E = \frac{1}{2}mv^2.

From above we know that -

   Kinetic energy at the bottom of the cliff = potential energy at a height h

                 \frac{1}{2}mv^2=\ mgh

                ⇒ v^2=\ 2gh

                ⇒ h=\ \frac{v^2}{2g}

                ⇒ h=\ \frac{(24.2)^2}{2\times 9.8}

                ⇒ h=\ 29.88\ m

Hence, the height of the cliff is 29.88 m

             


5 0
3 years ago
Other questions:
  • Which of these is most likely a step in the formation of soil? a. erosion of soil b. crystallization of rocks c. animals digging
    5·2 answers
  • Four of your friends are in new relationships, but only two of these relationships are healthy. Which of your friends are in unh
    9·2 answers
  • List out the methods that you can use to separate solid-solid mixtures
    13·1 answer
  • If you view a complete free body diagram of a moving object, what two apects of the body's motion will the diagram show?
    14·1 answer
  • On a standing wave on a string, the minimum number of nodes is 1 and antinodes is 2. True or false?
    12·1 answer
  • 2. Which of the following is an example of work being done on an object? A prism scatters ultraviolet light into visible light.
    10·2 answers
  • This type of stretch keeps your heart rate elevated and muscles warm.
    7·2 answers
  • Does specific heat of a substance depend on its temperature?​
    11·1 answer
  • n a distant solar system, a planet of mass 5.0 x 1024 kg orbits a sun of mass 3.0 x 1030 kg at a constant distance of 2.0 x1011
    5·1 answer
  • Two thin wires rings each having a radius R are placed at a distance d apart with their axes coinciding. The charges on the two
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!