Given: Mass of earth Me = 5.98 x 10²⁴ Kg
Radius of earth r = 6.37 x 10⁶ m
G = 6.67 x 10⁻¹¹ N.m²/Kg²
Required: Smallest possible period T = ?
Formula: F = ma; F = GMeMsat/r² Centripetal acceleration ac = V²/r
but V = 2πr/T
equate T from all equation.
F = ma
GMeMsat/r² = Msat4π²/rT²
GMe = 4π²r³/T²
T² = 4π²r³/GMe
T² = 39.48(6.37 x 10⁶ m)³/6.67 x 10⁻¹¹ N.m²/Kg²)(5.98 x 10²⁴ Kg)
T² = 1.02 x 10²² m³/3.99 x 10¹⁴ m³/s²
T² = 25,563,909.77 s²
T = 5,056.08 seconds or around 1.4 Hour
Answer:
532 millimeters of mercury
Explanation:
In order to convert the pressure from atm to millimeters of mercury (mm Hg), we should remind the conversion factor between the two units:
1 atm = 760 mm Hg
Therefore, we can solve the problem by setting up the following proportion:

Solving for x, we find

Answer:
Newton's First Law of Motion applies here.
Explanation:
Before crashing into the fence, Amy was moving at a certain speed on her bike. As, she crashed her bike into the fence, the collision stopped the bike suddenly. But, Amy had the same speed due to inertia of her body. Due tot his speed Amy did not stop and she was thrown over the fence onto the lawn. So, the force of inertia of Amy's body caused her to be overthrown in this case. We study about inertia in Newton's First Law of Motion, which is also known as Law of Inertia.
<u>Newton's First Law of Motion applies here.</u>
Answer:
A. velocity and wavelength
Explanation:
- When a wave travels from one medium to another it undergoes a change in direction and this is referred to as refraction.
- Refraction is the bending of a wave or a change in direction of a wave as it travels from one medium to another. Refraction is accompanied by change in velocity and wavelength of a wave.
- Velocity of a wave is proportional to the wavelength of the wave therefore, if the velocity of a wave changes the the wavelength will also change proportionally to the velocity.