The molecular geometry of a molecule with a core atom that has five areas of electron density and precisely one lone pair of electrons is called a disphenoidal or seesaw molecular geometry.
What is meant by disphenoidal or seesaw molecular geometry?
- Four bonds are made to an atom in the center of a disphenoidal or seesaw-shaped molecular structure, which has overall C2v structural symmetry. The fact that it resembles a playground seesaw is how it got the moniker "seesaw." Tetrahedral or, less frequently, square planar geometry is produced when four bonds to a center atom are present.
- The core atom of a molecule with a steric number of 5 and bonds to 4 additional elements and 1 lone pair is said to be in the seesaw geometry.
Learn more about geometry here:
brainly.com/question/16178099
#SPJ4
Answer:
78.2 g/mol
Step-by-step explanation:
We can use the <em>Ideal Gas Law</em> to solve this problem:
pV = nRT
Since n = m/M, the equation becomes
pV = (m/M)RT Multiply each side by M
pVM = mRT Divide each side by pV
M = (mRT)/(pV)
Data:
ρ = 2.50 g/L
R = 0.082 16 L·atm·K⁻¹mol⁻¹
T =98 °C
p = 740 mmHg
Calculation:
(a)<em> Convert temperature to kelvins
</em>
T = (98 + 273.15) = 371.15 K
(b) <em>Convert pressure to atmospheres
</em>
p = 740 × 1/760 =0.9737 atm
(c) <em>Calculate the molar mass
</em>
Assume V = 1 L.
Then m = 2.50 g
M = (2.50 × 0.082 06 × 371.15)/(0.9737 × 1)
= 76.14/0.9737
= 78.2 g/mol
Wave speed = frequency x wavelength
= 50 x 0.1
= 5 m/s
Hope this helps!
Answer:
1. ![K_eq = [Ca^{2+][OH^-]^2 = K_{sp}](https://tex.z-dn.net/?f=K_eq%20%3D%20%5BCa%5E%7B2%2B%5D%5BOH%5E-%5D%5E2%20%3D%20K_%7Bsp%7D)
2. a. No effect;
b. Products;
c. Products;
d. Reactants
Explanation:
1. Equilibrium constant might be written using standard guidelines:
- only aqueous species and gases are included in the equilibrium constant excluding solids and liquids;
- the constant involves two parts: in the numerator of a fraction we include the product of the concentrations of products;
- the denominator includes the product of the concentrations of reactants;
- the concentrations are raised to the power of the coefficients in the balanced chemical equation.
Based on the guidelines, we have two ions on the product side, a solid on the left side. Thus, the equilibrium constant has the following expression:
![K_eq = [Ca^{2+][OH^-]^2 = K_{sp}](https://tex.z-dn.net/?f=K_eq%20%3D%20%5BCa%5E%7B2%2B%5D%5BOH%5E-%5D%5E2%20%3D%20K_%7Bsp%7D)
2. a. In the following problems, we'll be considering the common ion effect. According to the principle of Le Chatelier, an increase in concentration of any of the ions would shift the equilibrium towards the formation of our precipitate.
In this problem, we're adding calcium carbonate. It is insoluble, so it wouldn't have any effect on the equilibrium.
b. Sodium carbonate is completely soluble, it would release carbonate ions. The carbonate ions would combine with calcium cations and more precipitate would dissolve. This would shift the equilibrium towards formation of the products to reproduce the amount of calcium cations.
c. HCl would neutralize calcium hydroxide to produce calcium chloride and water, so the amount of calcium ions would increase, therefore, the products are favored.
d. NaOH contains hydroxide anions, so we'd have a common ion. An increase in hydroxide would produce more precipitate, so our reactants are favored.
Explanation:
molecular collisions. reactant particles must collide with one another before any reaction can occur.
activation energy. colliding particles must possess a certain minimum total amount of energy if the collision is result in reaction.